摘要
研究了一类具有收获率的脉冲Lotka-Volterra竞争合作系统的正概周期解.通过利用重合度理论延拓定理、概周期理论和不等式分析技巧,获得了系统至少存在8个正概周期解的充分条件,推广和改进了早期文献的相关结果.
This paper investigates the existence of positive almost periodic solutions for an impulsive Lotka-Voterra competitive-cooperative system with harvesting terms. By using a continuation theorem based on coincidence degree theory almost periodic theory and inequality analysis technique, some sufficient conditions for the existence of at least eight positive almost periodic solutions of the system are obtained, which generalize and improve the related results of early literature.
出处
《数学的实践与认识》
北大核心
2017年第4期124-135,共12页
Mathematics in Practice and Theory
基金
广西高校科学技术研究项目(YB2014468)
广西重点实验室(非线性系统仿真与控制)