摘要
利用Mnch不动点定理以及一个脉冲积分不等式,研究二阶混合型脉冲积分-微分方程初值问题解的存在性.结果涉及右端项既包含导数又包含积分算子Sx的情形.最后给出了一个应用例子.
In this paper, by the Monch's _fixed point theorem and an impulsive integral inequality, we establish the existence of solutions of initial value problems for nonlinear second order impulsive integro-differential equations of mixed-type in Banach spaces. It is desirable that our results involve the right item f with both the derivative and the linear integral operator Sx. An example is given to demonstrate our result.
出处
《数学的实践与认识》
北大核心
2017年第4期266-272,共7页
Mathematics in Practice and Theory
基金
北京市自然科学基金(1152002)
关键词
脉冲积分-微分方程
初值问题
BANACH空间
不动点
脉冲积分不等式
Impulsive integro-differential equation
initial value problem
Banach space
fixedpoint
impulsive integral inequality.