期刊文献+

轨形Riemann面的Gromov-Witten不变量沿光滑点的加权涨开公式 被引量:1

Weighted blow-up of Gromov-Witten invariants of orbifold Riemannian surfaces along smooth points
原文传递
导出
摘要 本文考虑当一个紧辛轨形(orbifold)Riemann面(X,ω)沿着光滑点作加权涨开时,它的轨形Gromov-Witten不变量的变化情形和辛一致规则(uniruledness)性质的变化情形;证明了如下的结果:<α_1,...,α_m>~X _g,A=<p*α_1,...,p*α_m,■,<α_1,...,α_m,[pt]>~X _g,A=I_A·■.第一个公式表明,当(X,ω)是辛一致规则的(uniruled)时,它的沿光滑点的加权涨开■也是辛一致规则的. In this paper, we study the change of orbifold Gromov-Witten invariants, and the change of the symplectic uniruledness of a compact symplectic orbifold Riemannian surface under weighted blow-up along smooth points. We prove that The first formula shows that when (X, w) is symplectic uniruled, then so is (X, w), the weighted blow up of (X, w) along smooth point.
作者 杜承勇
出处 《中国科学:数学》 CSCD 北大核心 2017年第3期409-422,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11501393) 四川省教育厅(批准号:15ZB0027)资助项目
关键词 轨形Riemann面 轨形Gromov-Witten不变量 加权涨开公式 辛一致规则 orbifold Riemannian surfaces, orbifold Gromov-Witten invariant, weighted blow-up formula, symplectic uniruledness
  • 相关文献

参考文献2

二级参考文献19

  • 1Abramovich, D., Fantechi, B.: Orbifold techniques in degeneration formulas, Preprint, Math. AG/1103.5132.
  • 2Adem, A., Leida, Y., Ruan, J.: Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007.
  • 3Chen, B., Li, A., Sun, S., et al.: Relative Orbifold Gromov-Witten Theory and Degeneration Formula, Preprint, Math. SG/1110.6803.
  • 4Chen, B., Li, A., Wang, B.: Virtual neighborhood technique for pseudo-holomorphic spheres, Preprint, Math. GT/1306.3276.
  • 5Chen, W., Ruan, Y.: A new cohomology theory of orbifold. Comm. Math. Phys., 248(1), 1-31 (2004).
  • 6Chen, W., Ruan, Y.: Orbifold quantum cohomology. Cont. Math., 310, 25-86.
  • 7Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariants. Topology, 38, 933-1048 (1999).
  • 8Godinho, L.: Blowing up symplectic orbifolds. Ann. Global Anal. Geom., 20, 117—162 (2001).
  • 9Hu, J.: Gromov-Witten invariants of blow-ups along points and curves. Math. Z., 233, 709-739 (2000).
  • 10Hu, J., Li, T., Ruan, Y.: Birational cobordism invariance of uniruled symplectic manifolds. Invent. Math., 172, 231-275 (2008).

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部