期刊文献+

Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug- resistant breast cancer therapy 被引量:2

Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug- resistant breast cancer therapy
原文传递
导出
摘要 Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVEC) and hyaluronic acid (HA) as a targeting media, novel cascaded targeting nanoparficles (HACT NPs) were created on a rattle mesoporous silica (rmSiO2) scaffold for the pinpoint delivery of siRNAs along with an anticancer drug, aiming at overcoming the drug resistance of CTGF-overexpressing breast cancer in vivo. The targeting nanoparticles selectively accumulated in the vasculature under the guidance of the PEGA-pVEC peptide, cascaded by receptor-mediated endocytosis with the aid of another targeting agent, HA, presenting a greater in vivo tumor targeting ability than single targeting ligand vectors. In addition, an HA shell prevented the leakage of therapeutic drugs during the cargo transport process, until the hyaluronidase (HAase)-triggered degradation upon lysosomes entering, guaranteeing a controllable drug release inside the target cells. When the protective shell disintegrates, the released siRNA took charge to silence the gene associated with drug resistance, CTGF, thus facilitating doxorubicin-induced apoptosis. The cascaded targeting media (PEGA-pVEC and HA) advances precision-guided therapy in vivo, while the encapsulation of siRNAs into a chemotherapy drug delivery system provides an efficient strategy for the treatment of drug resistance cancers. Drug resistance renders standard chemotherapy ineffective in the treatment of connective tissue growth factor (CTGF)-overexpressing breast cancer. By co-embedding the breast tumor cell-penetrating peptide (PEGA-pVEC) and hyaluronic acid (HA) as a targeting media, novel cascaded targeting nanoparficles (HACT NPs) were created on a rattle mesoporous silica (rmSiO2) scaffold for the pinpoint delivery of siRNAs along with an anticancer drug, aiming at overcoming the drug resistance of CTGF-overexpressing breast cancer in vivo. The targeting nanoparticles selectively accumulated in the vasculature under the guidance of the PEGA-pVEC peptide, cascaded by receptor-mediated endocytosis with the aid of another targeting agent, HA, presenting a greater in vivo tumor targeting ability than single targeting ligand vectors. In addition, an HA shell prevented the leakage of therapeutic drugs during the cargo transport process, until the hyaluronidase (HAase)-triggered degradation upon lysosomes entering, guaranteeing a controllable drug release inside the target cells. When the protective shell disintegrates, the released siRNA took charge to silence the gene associated with drug resistance, CTGF, thus facilitating doxorubicin-induced apoptosis. The cascaded targeting media (PEGA-pVEC and HA) advances precision-guided therapy in vivo, while the encapsulation of siRNAs into a chemotherapy drug delivery system provides an efficient strategy for the treatment of drug resistance cancers.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第2期690-703,共14页 纳米研究(英文版)
关键词 drug-resistant breast cancer siRNA breast tumor cell-penetrating peptide hyaluronic acid rattle mesoporous silica drug-resistant breast cancer,siRNA,breast tumor cell-penetrating peptide,hyaluronic acid,rattle mesoporous silica
分类号 O [理学]
  • 相关文献

参考文献1

二级参考文献2

共引文献17

同被引文献1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部