期刊文献+

Oxygen-suppressed selective growth of monolayer hexagonal boron nitride on copper twin crystals

Oxygen-suppressed selective growth of monolayer hexagonal boron nitride on copper twin crystals
原文传递
导出
摘要 Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications. Here, we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu twin crystals. It was found that h-BN nucleated and grew preferentially and simultaneously on the narrow twin crystal strips present in the Cu substrates. The density functional theory calculations revealed that the introduction of oxygen could effidently ~ne the selectivity. This is because of the reduction in the dehydrogenation barrier of the precursor molecules by the introduction of oxygen. Our findings throw light on the direct growth of functional h-BN nanoribbons on nano-twinned crystal strips and switching of the growth behavior of h-BN films by oxygen. Controlled growth of hexagonal boron nitride (h-BN) with desired properties is essential for its wide range of applications. Here, we systematically carried out the chemical vapor deposition of monolayer h-BN on Cu twin crystals. It was found that h-BN nucleated and grew preferentially and simultaneously on the narrow twin crystal strips present in the Cu substrates. The density functional theory calculations revealed that the introduction of oxygen could effidently ~ne the selectivity. This is because of the reduction in the dehydrogenation barrier of the precursor molecules by the introduction of oxygen. Our findings throw light on the direct growth of functional h-BN nanoribbons on nano-twinned crystal strips and switching of the growth behavior of h-BN films by oxygen.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第3期826-833,共8页 纳米研究(英文版)
基金 This work was supported by the National Basic Research Program of China (Nos. 2013CB932604 and 2012CB933403), National Natural Science Foundation of China (Nos. 51535005, 51472117, 11472131, and 11622218), the Jiangsu Natural Science Foundation (Nos. BK20130781 and BIG20160037), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nos. MCMS-0416K01, MCMS-0416G01, and 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds (Nos. NP2015203 and NS2014012), the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ13_0150) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
关键词 monolayer hexagonalboron nitride copper twin crystals OXYGEN selectivity chemical vapor deposition monolayer hexagonalboron nitride,copper twin crystals,oxygen,selectivity,chemical vapor deposition
  • 相关文献

参考文献1

二级参考文献43

  • 1Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science2004, 306, 666-669.
  • 2Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.
  • 3Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small2011, 7, 1876-1902.
  • 4Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. F.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6. 6835.
  • 5Hunt, B.; Sanchez Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac Fermionsand Hofstadter Butterfly in a van der Waals heterostructure. Science 2013, 340, 1427-1430.
  • 6Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792-797.
  • 7Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627-632.
  • 8Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. J.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. J.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 2013,8, 119-124.
  • 9Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics -CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746-2752.
  • 10Zhang, C. H.; Zhao, S. L.; Jin, C. H.; Koh, A. L.; Zhou, Y.; Xu, W. G.; Li, Q. C.; Xiong, Q. H.; Peng, H. L.; Liu, Z. F. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat. Commun.2015, 6, 6519.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部