期刊文献+

多重假设检验中参数估计问题研究 被引量:2

Estimating the Number of True Null Hypotheses and Its Application in Multiple Testing
下载PDF
导出
摘要 在多重假设检验中,真正原假设的个数m_0是未知的,但是它有着很重要的影响,因此,它在最近的统计文献中备受关注。文章综述了三种主要的估计方法:最低斜率法、三次样条法、均值估计方法。然后将上述三种方法结合起来,提出了新的估计方法:均值三次样条法,并主要研究了其在微阵列数据上的应用。大量的模拟研究表明,和其他方法相比,新的估计方法具有较小的偏差和标准差。最后利用真实数据来对估计方法进行评估,并找出了差异表达性基因。模拟和实际数据表明此方法具有显著性提高。 In the multiple tests, the m0 is unknown, and it has an important effect, so it has attracted much attention in the recent statistical literature. This paper reviews three main methods of estimation, Lowest Slope (LSL) method, average estimate approach. Then the new method is proposed by the above methods. We mainly focus on the application of the microarray data in this paper. Extensive simulation studies indicate that this estimate approach has relatively small mean errors and comparing it with the above methods. Finally carry out the mieroarray data to evaluate the performance of the proposed estimator, and find the significant genes. Both simulated and real data can demonstrate that our method may improve the existing literature significantly.
作者 刘遵雄 田珊珊 Liu Zunxiong Tian Shanshan(School of Information Engineering, East China Jiaotong University, Nanchang 330013, China)
出处 《统计与决策》 CSSCI 北大核心 2017年第5期23-26,共4页 Statistics & Decision
基金 国家自然科学基金资助项目(71361009)
关键词 多重假设检验 真正原假设 m0 微阵列数据 multiple testing the number of true null hypotheses m0 microarray data
  • 相关文献

参考文献2

二级参考文献20

  • 1Yongchao Ge,Sandrine Dudoit,Terence P.Speed Resampling-based multiple testing for microarray data analysis.http://www.stat.berkeley.edu/~ gyc/633.pdf(2003).
  • 2Westfall PH,Young SS.Resampling-based Multiple Testing-Examples and Methods for p-value adjustment:John Wiley & Sons,Inc,1993.
  • 3Benjamini Y,Hochberg Y.Controlling the false discovery rate:A practical and powerful approach to multiple testing.J R Statist.Soc.B,1995,57,289-300.
  • 4Benjamini Y,Liu W.A step-down multiple testing procedure that controls the false discovery rate under independence.J.Statist.Plann.Inference,1999,82,163-170.
  • 5Benjamini Y,Yekutieli D.The control of the false discovery rate in multiple testing under dependency,Ann.Statist,2001,29,1165-1188.
  • 6Yoav Benjamini,Abba M Krieger Y,Daniel Yekutieli.Adaptive Linear Step-up Procedures that control the False Discovery Rate.http://www.math.tau.ac.il/~ybenja/MyPapers/bkymarch9.pdf(2005)
  • 7INGRID HEDENFALK,M.S,DAVID D UGGAN,etc.Gene-expression profiles in hereditary breast cancer,.The New England Journal of Medicine,2001,8,539-548.
  • 8Geoffrey JM,Kim-Anh Do,Christophe Ambroise.Analysizing Microarray Gene Expression Data.John Wiley & Sons,Inc,2004.
  • 9Benjamini, Y.,Hochberg, Y. Controling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing[J]. J. R. Stat. Soc., Ser. B,1995,(57).
  • 10Storey, J.D. A Direct Approach to False Discovery Rates[J]. J. R. Stat. Soc., Ser. B,2002, (64).

共引文献11

同被引文献174

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部