期刊文献+

基于点云的SUSAN特征点检测算法在三维重建中的应用

The Application of SUSAN Keypoint Detection Based on Point Cloud in 3D Reconstruction
原文传递
导出
摘要 针对三维重建中点云特征点检测问题,提出了一种基于点云的最小核值相似区(SUSAN)特征点检测算法,并将其应用于三维重建的初始配准.首先,对待测点云进行遍历,利用kd-tree数据结构获取三维r-邻域核值相似区,计算得到点云的候选特征点;其次,使用快速点特征直方图对候选点进行特征描述并实现两幅点云特征点间的匹配;最后,利用奇异值矩阵分解法计算变换矩阵,完成两幅点云的初始配准.实验结果表明该特征点检测算法计算效率较高,产生的特征点匹配准确,可为精确配准提供较好的初始位置. Aiming at the problem of the keypoint detection algorithms in the process of 3 D reconstruction, a smallest univalue segment assimilating nucleus (SUSAN) algorithm based on point cloud is proposed and has been applied to initial registration in 3D reconstruction process. Firstly, the algorithm selected the candidate keypoints by obtaining 3D univalue segment assimilating nucleus of each point with kd-tree structure. Secondly, the features of key points are described by using fast point feature histogram (FPFH). Then, we worked out the transformation matrix using singular value decomposition (SVD) method and got the result of initial alignment of two point clouds. Experiments show that the algorithm has high efficiency and can offer accurate matching of feature points and a good initial position for accurate registration.
作者 庄恩泽 吴献 ZHUANG En-ze WU Xian(Faculty of Software, Fujian Normal University, Fuzhou 350117, China)
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第2期1-9,17,共10页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省教育厅资助项目(JA12079) 福建师范大学教学改革研究项目(I201503039)
关键词 三维重建 SUSAN算子 特征描述 快速点特征直方图 迭代最近点算法 3 D reconstruction SUSAN operator feature description fast point feature histogram iterative closest points (ICP)
  • 相关文献

参考文献3

二级参考文献52

  • 1张国雄.坐标测量技术发展方向[J].红外与激光工程,2008,37(S1):1-5. 被引量:39
  • 2马伟,项波,查红彬,刘佳,张晓鹏.基于测量数据的植物建模[J].中国科学(F辑:信息科学),2009,39(1):134-144. 被引量:7
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4Xu C H, Quan L, Wang Y H, et al. Adaptive multi-resolutionfitting and its application to realistic head modeling[C]//Proceedings of Geometric Modeling and Processing 2004.Los Alamitos: IEEE Computer Society Press, 2004: 345-348.
  • 5Xu H, Gossett N, Chen B Q. Knowledge and heuristic-basedmodeling of laser-scanned trees [J]. ACM Transactions onGraphics, 2007, 26(4): Article No.19.
  • 6Mitra N J, Wand M, Zhang H, et al. Structure-aware shapeprocessing[C]//Computer Graphics Proceedings, Annual ConferenceSeries, ACM SIGGRAPH. New York:ACM Press,2013: Article No.1.
  • 7Shen C H, Fu H B, Chen K, et al. Structure recovery by partassembly[J]. ACM Transactions on Graphics, 2012, 31(6): ArticleNo.180.
  • 8Funkhouser T, Kazhdan M, Shilane P, et al. Modeling by example[J]. ACM Transactions on Graphics, 2004, 23(3): 652-663.
  • 9Shin H, Igarashi T. Magic canvas: interactive design of a 3Dscene prototype from freehand sketches[C]// Proceedings ofGraphics Interface. Mississauga: Canadian Information ProcessingSociety Press, 2007, 63-70.
  • 10Chaudhuri S, Koltun V. Data-driven suggestions for creativitysupport in 3D modeling[J]. ACM Transactions on Graphics,2010, 29(6): Article No.183.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部