摘要
在分析位置指纹识别算法的基础上,研究K近邻(KNN)法在室内定位中的应用。为提高定位精度,设计新的相似度计算公式。针对K近邻法计算量大问题,将聚类算法与KNN相结合,提出一种新的WiFi定位算法。实验结果表明,该算法在WiFi定位上与KNN精度基本一致,但定位时间相应缩短,可以满足室内和室外的定位要求。
In this paper, based on fingerprinting, the application of K Nearest Neighbor(KNN) method in indoor positioning is researched. In order to improve the positioning accuracy, this paper puts forward a new formula for calculating the similarity. Aiming at the problem of large amounts of computation for KNN method, it combines the clustering algorithm and KNN method, and proposes a new positioning algotithm. Experimental results show that, compared with the KNN, the proposed algorithm has comparable accuracy, and it significantly reduces the positioning time, which can satisfy the requirements of indoor and outdoor positioning.
出处
《计算机工程》
CAS
CSCD
北大核心
2017年第3期289-293,共5页
Computer Engineering
基金
广州市科技计划项目"基于压缩感知的无线室内定位关键技术及应用"(2014J4100247)
关键词
WiFi定位
机器学习
位置指纹识别
K近邻法
聚类
箱形图
WiFi positioning
machine learning
location fingerprinting
K Nearest Neighbor(KNN) method
clustering
boxplot