期刊文献+

轴向冲头和移动推块共同进给成形三通管新工艺 被引量:4

New process of T-pipe forming by moving block and punch axial feed
原文传递
导出
摘要 运用ABAQUS显式算法模拟仿真轴向位移变量和内压变量对成形支管的高度、最大和最小壁厚的影响,分析壁厚分布情况,探究支管补料原理。模拟仿真结果表明:在一定位移变量和内压变量范围内,大位移量和高内压对增加支管高度的贡献率分别为330%和84.2%,对最大壁厚值的影响分别为39.4%和13.5%,对最小壁厚值的影响分别为5.1%和33.8%;双侧移动型成形工艺的支管壁厚呈现出两侧对称的4个峰值和3个谷值分布规律;移动推块和轴向挤压冲头的补料原理是将两端的管料推挤送进到支管根部实现补料过程。 The influences of axial displacement variables and internal pressure variables on the branch height,the maximum and minimum wall thickness of T-pipe were numerically simulated by ABAQUS explicit algorithm.Then,the wall thickness distribution was analyzed,and the branch feeding principle was explored.The simulation results show that the contribution rate of long displacement and high internal pressure to the increase of branch height is 330% and 84.2% respectively,the influence on the maximum wall thickness is 39.4%and 13.5% respectively,and the influence on the minimum wall thickness is 5.1% and 33.8% respectively.Furthermore,the branch wall thickness shows that both sides are symmetrical with four peaks and three valleys.The material feeding principle of moving block and axial extrusion punch is that two-end material is pushed into the branch root area to realize the material feeding process.
出处 《锻压技术》 CAS CSCD 北大核心 2017年第3期109-114,共6页 Forging & Stamping Technology
基金 国家自然科学基金资助项目(U0934006)
关键词 三通管 移动推块 数值模拟 支管补料 内高压成形 T-pipe moving block numerical simulation branch feeding hydroforming technology
  • 相关文献

参考文献4

二级参考文献25

  • 1刘丽君,徐振廷.金属波纹管行业现状及发展建议[J].管道技术与设备,1993(1):2-3. 被引量:2
  • 2[1]Dohman F, Hartl C. Hydroforming-A method to manufacture lightweight parts. Journal of Materials Processing Technology, 1996, 60:669~676
  • 3[2]Vollertsen F, Prange T, Sander M. Hydroforming:Need, developments and perspectives. In:Advanced Technology of Plasticity, Vol. II, Proc.of the 6th ICTP, 1999:1 197~1 209
  • 4[4]Altan T, Jirathearanat S. Adaptive FEM process simulation for hydroforming tubes. In:Proc. of 2nd International Conference on Hydroforming, Fellbach/Stugat, Germany, 2001:363~384
  • 5[5]Yuan S J, Lang L H. Experimental and numerical simulation of aluminum tube hydroforming. In:Proc. of 2nd International Conference on Hydroforming, Fellbach/Stugat, Germany, 2001:339~347
  • 6HARTL Ch. Research and Advances in Fundamentals and Industrial Applications of Hydroforming[ J]. Journal of Ma- Lerials Processing Technology,2005,167:383 - 392.
  • 7HWANG Y M,LIN T C,CHANG W C. Experiments on T- shape Hydroforming with Counter Punch [ J ]. Journal of Materials Processing Technology, 2007, 192/193 : 243 - 248.
  • 8RIMKUSA W, BAUERB H, MIHSEINA M J A. Design of Load-curves for Hydroforming Applications [ J ]. Journal of Materials Processing Technology,2000,108:97 - 105.
  • 9LI Shuhui, YANG Bing, ZHANG Weigang, et al. Loading Path Prediction for Tube Hydroforming Process Using a Fuzzy Control Strategy [ J ]. Materials and Design, 2008, 29:1110 - 1116.
  • 10TengBG, Yuan S J, Chen Z T, et al. Plastic damage ofT- shape hydmforming [ J]. Transactions of Nonferrous Metals Socie- ty of China, 2012, (22) : 294 -301.

共引文献41

同被引文献44

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部