期刊文献+

改进种群多样性的双变异差分进化算法 被引量:12

Differential evolution algorithm with double mutation strategies for improving population diversity
下载PDF
导出
摘要 差分进化算法(DE)是一种基于种群的启发式随机搜索技术,对于解决连续性优化问题具有较强的鲁棒性.然而传统差分进化算法存在种群多样性和收敛速度之间的矛盾,一种改进种群多样性的双变异差分进化算法(DADE),通过引入BFS-best机制(基于排序的可行解选取递减策略)改进变异算子"DE/current-to-best",将其与DE/rand/1构成双变异策略来改善DE算法中种群多样性减少的问题.同时,每个个体的控制参数基于排序自适应更新.最后,利用多个CEC2013标准测试函数对改进算法进行测试,实验结果表明,改进后的算法能有效改善种群多样性,较好地提高了算法的全局收敛能力和收敛速度. Differential Evolution (DE) is an efficient population-based heuristic s- tochastic search technique. It is robust for solving continuous optimization problems. However, the discrepancy of population diversity and convergence rate exists in tradi- tional Differential Evolution. In this paper, differential evolution algorithm based on dou- ble mutation strategies for improving population diversity (DADE) was proposed. This algorithm presents a BFS-best mechanism to improve "current-to-best', which cooper- ates with DE/rand/1 to ensure population diversity. Meanwhile, the control parameters of individuals are updated automatically based on ranking. Finally, several benchmark functions in CEC2013 are used to test the proposed algorithm. The simulation result- s show that DADE can effectively improve population diversity, achieve better global searching ability and a higher convergence rate.
出处 《运筹学学报》 CSCD 北大核心 2017年第1期44-54,共11页 Operations Research Transactions
基金 江苏省高校自然科学基金(No.12KJB510007)
关键词 差分进化 种群多样性 双变异策略 排序 differential evolution, population diversity, double mutation strategy,ranking
  • 相关文献

参考文献2

二级参考文献87

  • 1张吴明,钟约先.基于改进差分进化算法的相机标定研究[J].光学技术,2004,30(6):720-723. 被引量:18
  • 2徐志高,关正西,张炜.模糊神经网络在导弹动力系统多故障诊断中的应用[J].弹箭与制导学报,2005,25(1):15-18. 被引量:3
  • 3杨晓明,邱清盈,冯培恩,潘双夏.盘式制动器的全性能优化设计[J].中国机械工程,2005,16(7):630-633. 被引量:19
  • 4刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 5宋立明,李军,丰镇平.跨音速透平扭叶片的气动优化设计研究[J].西安交通大学学报,2005,39(11):1277-1281. 被引量:13
  • 6Price K. Differential Evolution,, A Fast and Simple Numerical Optimizer [A]. 1996 Biennial Conf of the North American Fuzzy Information Processing Sociey[C]. New York, 1996:524-527.
  • 7Price K. Differential Evolution vs, the Functions of the 2nd ICEO [A]. IEEE Int Conf on Evolutionary Computation [C]. Indianupolis, 1997:153-157.
  • 8Ji-Pyng Chiou, Feng-Sheng Wang. A Hybrid Method of Differential Evolution with Application to Optimal Control Problems of a Bioprocess System[A]. IEEE Int Conf on Evolutionary Computation Proceedings[C]. New York, 1998:627-632.
  • 9Junhong Liu, Jouni Lampinen. A Fuzzy Adaptive Differential Evolution Algorithm[A]. IEEE Region 10 Conf on Computers, Communications, Control and Power Engineering [C]. Beijing, 2002 : 606-611.
  • 10Rainer S, Price K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces [J]. J of Global Optimization,1997,11 (4) : 341-359.

共引文献354

同被引文献90

引证文献12

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部