期刊文献+

基于改进萤火虫算法优化SVM的变电工程造价预测 被引量:18

Substation Engineering Cost Forecasting Method Based on Modified Firefly Algorithm and Support Vector Machine
下载PDF
导出
摘要 变电工程造价水平直接关系到电网工程的整体经济性,造价水平预测是控制造价、提高造价合理性的重要手段。在传统萤火虫算法的基础上,采用高斯扰动技术改进萤火种算法的位置更新公式,提高萤火从算法的寻优性能从而优化SVM预测模型的参数。通过Schaffer函数测试发现,高斯扰动萤火虫算法具有收敛速度快、搜索能力强等优点。实测结果表明:该模型具有较高的预测精度和有效性。 The cost level of substation engineering is closely related to the integrated economy of power grid projects, and the cost level forecasting is a crucial tool for controlling cost and improving cost rationality. Based on the conventional firefly algorithm, the Gaussian Disturbance is introduced into the firefly algorithm to improve the update equation, which aims to improve the searching ability and optimize the SVM parameters. By operating the Schaffer testing function, it is discovered that the Gaussian disturbance firefly algorithm has better convergence rate and searching ability. The case study of substation engineering in Guangdong Province further proves that the proposed model has higher forecasting accuracy and effectiveness.
出处 《中国电力》 CSCD 北大核心 2017年第3期168-173,共6页 Electric Power
基金 国家自然科学基金资助项目(71471059) 中央高校基本科研业务费专项资金资助项目(2016XS75 2016XS73)~~
关键词 萤火虫算法 支持向量机 高斯扰动 变电工程 造价预测 firefly algorithm support vector machine Gaussian disturbance substation engineering cost forecasting
  • 相关文献

参考文献13

二级参考文献147

共引文献170

同被引文献203

引证文献18

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部