期刊文献+

专利技术主题分析:基于SAO结构的LDA主题模型方法 被引量:36

Technical Topic Analysis in Patents: SAO-based LDA Modeling
原文传递
导出
摘要 [目的/意义]改善现有专利技术主题分析方法主题辨识度低、主题词二义性、无法识别技术信息中的"问题"与相应"解决方案"等问题。[方法/过程]本文通过抽取专利文本中的SAO结构,并从SAO结构中识别"问题和解决方案"(P&S)模式,基于"bagofP&S"假设,构建基于"主语-行为-宾语"(subject-action-object,SAO)结构的LDA主题模型,实现对专利文献主题结构的识别和分析。[结果/结论]案例研究表明,该方法能够有效识别主题分布,并在主题辨识度和语义消岐方面较传统LDA模型具有较大优势。 [ Purpose/significance] There are three problems we have to fix in performing technical topic analysis: difficult to classify topic ; homonyms of words and terms ; difficult to identify technical problem and solution. [ Method/ process ] In this paper, we first extract SAO structures from patents, and then we explore and identify the problem & solu- tion patterns embodied in SAO structures. At last, SA0-Based LDA model is built based on the "bag of P&S" assumption and it performs technical topic analysis at concept level. [ Result/conclusion ] The case study shows that the proposed method can effectively identify topics' distribution, and has great advantages in topic identification and word disambigu- ation compared with traditional LDA model.
出处 《图书情报工作》 CSSCI 北大核心 2017年第3期86-96,共11页 Library and Information Service
基金 国家自然科学基金面上项目"基于语义TRIZ的新兴技术创新路径预测研究"(项目编号:71373019) 国家高技术研究发展计划"面向政府管理的大数据智能服务系统及应用示范"(项目编号:2014AA015105)研究成果之一
关键词 SAO结构 技术主题分析 LDA模型P&S模式 石墨烯 SAO structures technical topic analysis LDA model P&S pattern graphene
  • 相关文献

参考文献6

二级参考文献96

  • 1杨祖国,李文兰.中国专利被专利文献引用的主题分析[J].情报科学,2005,23(12):1845-1851. 被引量:14
  • 2王林,戴冠中.复杂网络的度分布研究[J].西北工业大学学报,2006,24(4):405-409. 被引量:68
  • 3Hristovski D,Friedman C,Rindflesch T C,et al.Literat-ure-Based Knowledge Discovery using Natural Language Processing[J].Literature-based Discovery,Information Science and Knowledge Management,2008(15):133-152.
  • 4Sayyadi H,Getoor L.FutureRank:Ranking Scientific Articles by Predicting their Future PageRank[C] //Proceedings of the 9th SIAM International Conference on Data Mining,2009:533-544.
  • 5Blei D M,Ng A Y,Jordan M I.Latent Dirichlet Allocation[J].Journal of Machine Learning Research,2003(3):993-1022.
  • 6Erosheva E,Fienberg S,Lafferty J.Mixed-membership Models of Scientific Publications[C] //Proceedings of the National Academy of Sciences,2004(101):5220-5227.
  • 7Nallapati R M,Ahmed A,Xing E P,et al.Joint Latent Topic Models for Text and Citations[C] //Proceeding of the 14th international conference on Knowledge Discovery and Data Mining,2008:542-550.
  • 8Blei D M,Lafferty J D.Dynamic Topic Model[C] //Proceedings of the 23rd international conference on Machine Learning,2006(48):113-120.
  • 9Wang X,McCallum A.Topics over Time:a non-Markov Continuous-time Model of Topical Trends[C] //Proceedings of the 12th international conference on Knowledge Discovery and Data Mining,2006:424-433.
  • 10Rosen-Zvi M,Griffths T,Steyvers M,et al.The Author-Topic Model for Authors and Documents[C] //Proceedings of the 20th conference on Uncertainty in artificial intelligence,2004:487-494.

共引文献129

同被引文献585

引证文献36

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部