期刊文献+

基于散斑方差和多普勒算法的光学相干层析术血流成像 被引量:7

Blood Flow Imaging by Optical Coherence Tomography Based on Speckle Variance and Doppler Algorithm
原文传递
导出
摘要 提出了一种基于扫频光学相干层析术的散斑方差(SV)和多普勒算法结合的方法来提取人体皮肤毛细血管的血流信号。这种方法利用了SV算法获取血流信号强度和多普勒算法获取相位信息的优势。SV算法对两幅结构图同一位置的强度进行方差运算。多普勒算法可以通过测量相邻A扫之间的相位变化来获取多普勒频移,进而获取血流流速信息,但这种方法中扫频光源的相位和采样信号随时间存在漂移,导致触发信号和采集卡模数转换之间的延迟时间在一个取样时钟周期中变化。为了校正这部分相位变化,实验系统中采用双参考镜,通过校正两参考镜相邻A扫之间的相位变化来对相应血流部分进行相位校正。进行了样本模拟实验和人体皮肤成像实验,SV算法获取血流强度和经标准平面镜校正的多普勒频移来获取血流方向,综合运用两种方法得到具有方向信息的血流强度图。 For extracting the blood flow signal of the human skin blood capillary, a combination method of speckle variance (SV) based on the swept source optical coherence tomography, and Doppler algorithm is proposed. This method takes advantage of SV algorithm to get the blood flow signal intensity and advantage of Doppler algorithm to obtain phase. SV algorithm calculates the variance of intensity at the same location of two frames. Doppler algorithm calculates the phase shift between adjacent A scans in order to obtain frequency shift. However, the phase of the swept source output and the sampled signal drift slowly over time, causing the delay between the trigger signal and the subsequent analog to digital conversion to vary within a sample clock cycle. To correct the change in phase, double reference mirrors are used in the experimental system. We adjust the phase shift between adiacent A scans of the two reference mirrors to correct the phase of the corresponding blood flow. Sample simulation experiment and human skin imaging experiment are carried out. SV algorithm is used to obtain the intensity of blood and Doppler phase shift after correction is used to obtain the direction of blood. Blood flow intensity with direction information is obtained by combination of the two methods.
出处 《激光与光电子学进展》 CSCD 北大核心 2017年第3期230-237,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61275198 60978069) 国家级科研训练项目
关键词 医用光学 扫频光学相干层析术 多普勒算法 散斑方差 相位校正 medical optics swept source optical coherence tomography Doppler algorithm speckle variance phase correction
  • 相关文献

参考文献4

二级参考文献59

  • 1俞晓峰,丁志华,陈宇恒,黄丽娜,周琳,周振明,吴兰,刘旭.光纤型光学相干层析成像系统的研制[J].光学学报,2006,26(2):235-238. 被引量:34
  • 2刘丰,张人佶,颜永年,刘海霞.明胶/海藻酸钠组织工程支架的快速成形[J].清华大学学报(自然科学版),2006,46(8):1357-1360. 被引量:6
  • 3D. Huang,E. A. Swanson, C. P. Linet al.. Optical coherence tomography[J]. Science, 1991, 254(5035) : 1178-- 1181.
  • 4S. Yun, G. Tearney, J. de Boer et al.. High speed optical frequency-domain imaging [J]. Opt. E:cpress, 2003, 11 (22) : 2953-2963.
  • 5F. Fercher, C. K. Hitzenberger, G. Kamp et al.. Measurement of intraocular distances by backscattering spectral interferometry[J]. Opt. Commun. , 1995,117:443-448.
  • 6G. Hausler , M. W. Lindner. Coherence radar and spectral radar new tools for dermatological diagnosis[J]. J. Biomed. Opt. , 1998,3:21-31.
  • 7S. R. Chinn,E. A. Swanson, J.G. Fujimoto. Optical coherence tomography using a frequency tunable optical source[J]. Opt. Lett., 1997,22(5):340-342.
  • 8R. Leitgeh, C. Hitzenberger, A. Fercher. Performance of fourier domain vs. time domain optical coherence tomography [J]. Opt. Express, 2003,11(8): 889-894.
  • 9M. Choma, M. Sarunic, C. Yang et al.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J]. Opt. Express, 2003,11(18):2183-2189.
  • 10M. Wojtkowski,A. Kowalczyk, R. Leitgeb et al.. Full range complex spectral optical coherence tomography technique in eye imaging[J]. Opt. Lett., 2002,27(16):1415-1417.

共引文献45

同被引文献11

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部