期刊文献+

基于主成分分析-支持向量机模型的激光钎焊接头质量诊断 被引量:13

Quality Diagnosis of Joints in Laser Brazing Based on Principal Component Analysis-Support Vector Machine Model
原文传递
导出
摘要 基于主成分分析-支持向量机(PCA-SVM)模型,提出一种利用近红外辐射信号预测接头形貌的方法,研究了信号的变化规律与焊缝形貌之间的相关性,实现了工艺参数的优化。提取信号的6种时域特征参数并进行主成分分析,获得了接头形貌综合评定指标。根据信号的输入特征,利用支持向量机进行了分类预测。结果表明,近红外辐射信号能够反映焊接过程中焊缝状态的变化,不同缺陷的特征变化具有较大差异,且存在清晰的识别度。该预测模型能够准确识别焊缝成形形貌,准确率高达96.6%。 Based on the principal component analysis-support vector machine (PCA-SVM) model, one method is proposed to predict the joint morphology with the near infrared radiation signal. The correlation between the change laws of signals and the weld formation morphology is investigated and the optimization of process parameters is realized. Six kinds of characteristic parameters of signals in time domain are extracted and the principal component analysis is carried out to obtain the comprehensive evaluation index of joint morphology. Based on the input characteristics of signals, the classification prediction is done by using the support vector machine. The results show that, the near infrared radiation signals can reflect the change of weld state during the welding process, the characteristic changes of different defects have great difference, and the clear recognition exists. The proposed prediction model can accurately identify weld appearance with accuracy up to 96.6 %.
出处 《中国激光》 EI CAS CSCD 北大核心 2017年第3期76-83,共8页 Chinese Journal of Lasers
基金 国家自然科学基金(51375191)
关键词 激光技术 激光钎焊 近红外辐射信号 质量诊断 主成分分析 支持向量机 laser technique laser brazing near infrared radiation signal quality diagnosis principal component analysis support vector machine
  • 相关文献

参考文献2

二级参考文献46

  • 1吴庆阳,苏显渝,李景镇,惠彬.一种新的线结构光光带中心提取算法[J].四川大学学报(工程科学版),2007,39(4):151-155. 被引量:50
  • 2Y Zhang, S Wang, X Zhang, et a 1.. Freight train gauge—exceeding detection based on three-dimensional stereo vision measurement[J]. Maeh Vis Appl, 2012. 24(3): 461-475.
  • 3L Marc, K Pulli, B Curless, et al.. The digital Michelangelo project: 30 scan ning of large statues[C]. Proc A cm Siggraph. 2000.
  • 4Zhou Fuqiang, Zhang Guangjun,Jiang Jie. Constructing feature points used for calibrating a structured light vision sensor byviewing a plane from unknown orientations[J]. Opt & Lasers in Eng. 2005, 43(10): 1056-1070.
  • 5Lukas J. Fridrich J, Goljan M. Detecting digital image forgeries using sensor pattern noise(C]. SPIE, 2006, 6072: 60720V.
  • 6C S,eger- An unbiased detector of ciirvilinear strurtures[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998,20(2): 113-125.
  • 7K T Diedrich, J A Roberts, R H Schmidt, et al.. Comparing performance of centerline algorithms for quantitative assessment of brainvascular anatomy[J]. Anat Rec, 2012, 295(12): 2179-2190.
  • 8Bazen A M, Gerez S H. Systematic methods for the computation of the directional fields and singular points of finger prints[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 905-918.
  • 9Pearson K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901, 2(6): 559-572.
  • 10Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.

共引文献63

同被引文献90

引证文献13

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部