期刊文献+

综合GPS和NCEP CFSv2的区域PWV估计方法 被引量:5

Regional PWV Estimation Using GPS and NCEP CFSv2
原文传递
导出
摘要 利用地基GPS估计PWV(precipitable water vapor)时,除GPS观测数据外,GPS测站地表的气温和气压也是必要参数。针对我国多数GPS网并未配备相应的气象传感器的情况,利用美国环境预报中心气候预报系统第2版提供的逐6h产品,并顾及测站高程转换时的平均海平面高改正,提出一种GPS测站气象参数的插值新方法。以香港卫星定位参考站网实测GPS数据进行试验研究,结果表明,平均海平面高对地表气压的插值结果影响较大,而对地表气温的插值结果影响较小;经平均海平面高改正后,地表气压插值结果的平均均方根误差(RMSE)为1.61hPa,地表气温插值结果的平均RMSE为1.93 K;由插值气象参数估计的PWV的平均RMSE为2.76mm,验证了所提方法的有效性。 Site-specific surface meteorological data are essential to derive the precipitable water vapor (PWV) using ground-based GPS. However, many GPS networks lack co-located sensors which can be used to obtain these meteorological variables. This paper proposes a method, which involves the inter- polation of surface pressure and temperature fields obtained from the National Centers for Environ- mental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2) 6-hourly products to derive these site-specific meteorological data. In addition, the significance of ellipsoid-MSL height bias cor- rection on the meteorological data was tested by considering mean sea surface height (MSSH) in our estimation. Based on Hong Kong Satellite Positioning Reference Station Network (SatRef), the method is tested and the results indicate that, the MSSH has a significant influence on the interpolated surface pressure, while less influence on the interpolated surface temperature. The average RMSE of the interpolated surface pressure and temperature are 1.61hPa and 1.93K after the MSSH correction, respectively. The estimated PWV yields an RMSE of 2.76mm, demonstrating the effectiveness of the proposed method.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第3期328-333,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41274017 40974001) 江苏省研究生科研创新计划(KYLX15_0532) 中央高校基本科研业务费项目(2015B42114)~~
关键词 GPS气象学 NCEP CFSv2 PWV 平均海平面 插值 GPS meteorology NCEP CFSv2 PWV mean sea surface interpolation
  • 相关文献

参考文献3

二级参考文献51

  • 1李川,张廷军,陈静.近40年青藏高原地区的气候变化——NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J].高原气象,2004,23(z1):97-103. 被引量:67
  • 2Schueler T. On ground based GPS tropospheric delay estimation. Dissertation for the Doctoral Degree. Neubiberg: University der Bundeswehr Muchen, 2001.
  • 3Mockler S B. Water Vapor in the Climate System. Special Report. In: Water Vapor in the Climate System. Washington, DC: American Geophysical Union, 1995.
  • 4Bevis M, Businger S, Herring T A, et al. GPS meteorology-remote-sensing of atmospheric watervapor using the Global Positioning System. J Geophys Res, 1992, 97(D14): 15787-15801.
  • 5Bevis M, Businger S, Chiswell S, et al. GPS meteorology-mapping zenith wet delays onto precipitable water. J Appl Meteorol, 1994, 33: 379-386.
  • 6Businger S, Chiswell S, Bevis M, et al. The promise of GPS in atmospheric monitoring. Bull Am Meteorol Soc, 1996, 77:5-18.
  • 7Duan J, Bevis M, Fang P, et al. GPS meteorology: Direct estimation of the absolute value of precipitable water. J Appl Meteorol, 1996, 35: 830-838.
  • 8Rocken C, Ware R, Van Hove T, et al. Sensing atmospheric water vapor with the Global Positioning System. Geophys Res Lett, 1993, 20: 2631-2634.
  • 9Rocken C, Van Hove T, Ware R. Near real-time GPS sensing of atmospheric water vapor. Geophys Res Lett, 1997, 24:3221-3224.
  • 10Bar-Sever, Yoaz E, Peter M, et al. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res, 1998, 103:5019-5035.

共引文献88

同被引文献34

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部