摘要
为加快迭代学习控制律的收敛速度,针对线性时不变系统,以P-型、D-型学习律为例,提出了区间可调节的、具有指数加速、含反馈信息的迭代学习控制算法。首先,根据每次学习效果,确定下一次迭代需要修正的区间并在该区间内修正控制律增益;其次,分析了所提算法的收敛性并给出其收敛条件;最后,理论结果表明收敛速度主要取决于被控对象、控制律增益、修正指数和学习区间的大小。相同仿真条件下,与传统算法相比,所提算法具有更快的收敛速度。
In order to accelerate the convergence speed of the iterative learning control law, taking the P- type and D-type learning laws as examples, an acceleration correction algorithm with variable gain and adjust- ment of learning interval is proposed for the linear time invariant system. First of all, the modified interval in the next iteration is determined based on the learning effects, and the control law gain is modified in the inter- val. Then, the convergence of the proposed algorithm is analyzed and the convergence condition is presented. Finally, analysis results show that the convergence speed mainly depends on the system state, the learning gain, the correction exponential and the learning interval. In the same simulation condition, the proposed algo- rithm has a faster convergence speed compared with the traditional algorithms.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2017年第4期883-887,共5页
Systems Engineering and Electronics
基金
国家自然科学基金(51407143)
陕西省自然科学基础研究计划(2014JQ7264)资助课题
关键词
迭代学习控制
单调收敛
收敛速度
加速学习
iterative learning control (ILC)
monotone convergence
convergence rate
gain adjustment