摘要
讨论了一个形如φ(xy)=k_1φ(x)+k_2φ(y)(k_1≠k_2)的具体方程φ(xy)=5φ(x)+7φ(y)的可解性,给出了其一切整数解.并根据这一方程的解的情况,给出了(x,y)=(k_1+k_2,k_1+k_2)是方程φ(xy)=k_1φ(x)+k_2φ(y)(k_1≠k_2)的1组整数解的结论,这里的k_1,k_2都是正整数.
The solvability of a specific equation φ( xy) = 5φ( x) + 7φ( y),such as φ( xy) = k1φ( x) +k2φ( y),was discussed. And all integer solutions were given. According to the condition of its solutions,a conclusion that( x,y) =( k1+ k2,k1+ k2) was a positive integer solution of equation φ( xy) = k1φ( x) +k2φ( y) was given,where k1≠k2,and k1,k2 were positived integers.
出处
《郑州大学学报(理学版)》
CAS
北大核心
2017年第1期7-10,共4页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金项目(11201411)
喀什大学校内项目(142513)