期刊文献+

羟基磷灰石及其复合材料增材制造研究现状 被引量:8

Additive Manufacture of Hydroxyapatite and Its Composites
原文传递
导出
摘要 由于羟基磷灰石与天然骨中的无机矿物相类似,具有良好的生物相容性和骨传导性,可和宿主骨形成良好的化学键合,因此成为骨组织工程支架材料中常见的主要成分。骨组织工程支架具有个性化复杂结构,对制造工艺有较高要求,发泡法和冷冻干燥法等传统制造方法难以成形出具有复杂结构的个性化支架。增材制造技术利用计算机辅助设计,采用逐层制造并叠加的原理,理论上可成形出任何形状的三维实体零件。与传统制造工艺相比,该技术在精确制造复杂外部形状、内部微孔结构的骨组织工程支架方面有独特优势。综述了目前利用增材制造技术成形羟基磷灰石及其复合材料的最新研究进展,并展望了该领域的发展趋势。 Hydroxyapatite (HA), which is similar to inorganic mineral in natural bones, is a main biomaterial for fabricating bone tissue engineering scaffolds due to its superior biocompatibility and bone conductibility. Bone tissue engineering scaffolds show a complex and customised structure, which has a greater requirement for manufacturing processes. However, it is difficult for the conventional manufacturing techniques such as foaming method and injection forming to create an ideal porous scaffold of artificial bones. Additive manufacture (AM) is capable of making any shapes of three-dimensional solid parts layer-by-layer by using computer-aided design models. Compared to the conventional processes, the AM shows some unique advantages in fabricating bone tissue engineering scaffolds with greater manufacturing accuracy, complex external shapes and internal micro-porous structures. This paper reviews the state of the art in the preparation and the AM process of HA and its composite materials, and proposes an outlook in this aspect.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2017年第3期393-401,共9页 Journal of The Chinese Ceramic Society
基金 广东省引进创新创业团队计划(2013C071)
关键词 增材制造技术 羟基磷灰石 生物材料 骨组织工程支架 additive manufacturing hydroxyapatite biomaterial bone tissue engineering scaffold
  • 相关文献

参考文献3

二级参考文献39

  • 1李琦,李勃,周济,李龙土,桂治轮.自动注浆成型技术:一种新型三维复杂结构成型方法[J].无机材料学报,2005,20(1):13-20. 被引量:9
  • 2NELSON J C. Selective laser sintering: A definition of the process and an empirical sintering model [D]. Austin: the University of Texas at Austin, 1993.
  • 3HO H C H, GIBSON I, CHEUNG W L. Effects of energy density on morphology and properties of selective laser sintered polycarbonate [J]. J. Mater. Process. Technol. , 1999, 89-90: 204-210.
  • 4HO H C H, CHEUNG W L, GIBSON I. Morphology and properties of selective laser sintered bisphenol-A polycarbonate[J]. Ind. Eng. Chem. Res., 2003,(9): 1850-1862.
  • 5HO H C H, CHEUNG W L, GIBSON I. Effects of graphite powder on the laser sintering behaviour of polycarbonate [J ]. Rapid Prototyping Joumal, 2002, 8(4): 233-242.
  • 6SHI Y S, CHEN J B, WANG Y, et al. Study of the selective laser sintering of polycarbonate and postprocess for parts reinforcement [J]. Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl., 2007, 221 : 37-42.
  • 7ZHENG H, ZHANG J, LU S, et al. Effect of core-shell composite particles on the sintering behavior and properties of narlo-Al2O3/ polystyrene composite prepared by SIS[J]. Mater. Lett., 2006, 60: 1219-1223.
  • 8SHI Y S, WANG Y, CHEN J B, et al. Experimental investigation into the selective laser sintering of high-impact polystyrene[J]. J.Appl. Polym. Sci., 2008, 108 (1): 535-540.
  • 9EVANS R S, BOURELL D L, BEAMAN J J, et al. Rapid manufacturing of silicon carbide composites[J ]. Rapid Prototyping Journal, 2005, 11: 37-40.
  • 10SUBRAMANIAN K, VAIL N, BARLOW J, et al. Selective laser sintering of alumina with polymer binders [ J ]. Rapid Prototyping Journal, 1995, 1: 24-35.

共引文献33

同被引文献80

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部