期刊文献+

基于小波包能量分析的红外火焰信号识别 被引量:6

Infrared Flame Signal Recognition Based on Wavelet Packet Energy Analysis
下载PDF
导出
摘要 在设计红外火焰探测器的过程中,人工光源常常会引起探测器的误报。为有效区分人工光源与火焰信号,本文首先对采集的1种人工光源以及3种火焰信号进行分析,将采集的信号进行小波包4层分解,得到信号的能量谱。通过分析发现选取第2,3,4,7频段的能量值能够将这4种信号有效区分。为进一步验证实验结果,本文将双通道两路信号的第2,3,4,7频段的8个能量值作为一组特征向量,与BP神经网络结合进行模式识别。结果表明,通过这样的方法不仅可以区分火焰和人工光源,同时可以对3种火焰进行识别,其识别的正确率为84.1%。因此,基于小波包能量分析的方法提取这8个能量值作为特征值具有一定的可行性,能有效减少人工光源引起的误报,同时为火焰种类的识别以及以后的灭火自动化提供了新的可能性。 In process of design of infrared flame detector, the recognition rate of which was reduced by some artificial lights. In order to distinguish artificial light and flame, an artificial light and three kinds of flame were analyzed firstly. The collected signals were decomposed by wavelet packet, then the wavelet packet energy spectrum was acquired. The results showed that the four kinds of signal can be distinguished by the energy of 2,3,4 and7 frequency band. In order to verify the experimental results, the eight energy values of the 2,3,4,7 spectrum from two sensors were regarded as a group of feature vector. The mode of recognition was carried out by applying BP neural network and the feature vector. The results showed that the method can distinguish the artificial light and the flame. In addition, the three kinds of flame were also identified. The recognition rate can reach 84.1%. Therefore, the method based on wavelet packet energy analysis has certain feasibility, which can increase the accuracy of flame identification. It also provides a new possibility to put out the fire automatically in the feature.
作者 周永杰 余震虹 张赵良 ZHOU Yongjie YU Zhenhong ZHANG Zhaoliang(College oflnternet of Things Engineering, Jiangnan University, Wuxi 214122, China Wuxi GLT Safety Equipment Co., Ltd, Wuxi 214073, China)
出处 《红外技术》 CSCD 北大核心 2017年第3期232-236,共5页 Infrared Technology
关键词 红外火焰探测器 小波包 BP神经网络 特征值 infrared flame detector, wavelet packet, BP neural network, feature vector
  • 相关文献

参考文献5

二级参考文献51

  • 1许惠君,李彩林,刘晓安.数据挖掘技术在水库调度中的研究与应用[J].计算机与数字工程,2006,34(9):61-63. 被引量:7
  • 2彭文季,罗兴锜.基于小波包分析和支持向量机的水电机组振动故障诊断研究[J].中国电机工程学报,2006,26(24):164-168. 被引量:55
  • 3VIRTS J. The third international meeting on brain-computer interface technology: making a difference [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2006,14 ( 2 ) : 126-127.
  • 4VAUGHAN T M. Brain-computer interface technology: a review of the second international meeting [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2003, 11 (2) : 94-109.
  • 5WOLPAW J R, BIRBAUMER N, HEETDERKS W, et al. Brain-computer interface technology: a review of the first international meeting [ J ]. IEEE Trans. Rehabil. Eng. , 2000,8(2) :164-173.
  • 6WOLPAW J R, BIRBAUMER N, MCFARLAND, et al. Brain-computer interface for communication and control [ J ]. Clinical Neurophysiology, 2002,113 (6) :767-791.
  • 7BLANKERTZ B, MULLER K R, et al. The BCI competition III: validating alternative approaches to actual problems [ J ]. IEEE Trans Neural Syst. Rehabil. Eng., 2006,14 (2) : 153-159.
  • 8BLANKERTZ B, MULLER K R, CURIO G, et al. BCI competition 2003--progress and perspectives in detection and discrimination of EEG single trials [ J ]. IEEE Trans. Biomed. Eng. , 2004,51 (6) :1044-1051.
  • 9PFURSTCHELEER G, L da SILVA FH. Event-related EEG/MEG synchronization and desynchronizaiton: basic principles [ J ]. Clinical Neurophysiology, 1999, 110 (11) :1842-1857.
  • 10PFURSTCHELLER G, NEUPER C. Motor imagery and direct brain-computer communication [ J ]. Proc IEEE, 2001,89(7) :1123-1134.

共引文献128

同被引文献71

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部