期刊文献+

基于微博电影评论的情感分析研究 被引量:1

Research on Emotional Analysis Based on Micro-Blog Film Criticism
下载PDF
导出
摘要 近几年,数据挖掘分析成为一个热点研究的课题,其中的文本研究分析更成为热中之热,而微博电影评论成为一种新的电影设计模式,也就自然成为研究对象。主要从数据采集、特征提取、情感词典构建及情感计算几个方面进行研究,提出基于句法分析算法,并进行必要研究,进一步提高微博电影评论情感倾向分析的正确率。 In recent years, data mining analysis has become a hot research topic, in which the text research and analysis has become a hot, microblog film commentary has become a new film design pattern. Mainly studies the data acquisition, feature extraction, emotion dictionary construction and emotion computation, proposes a syntax analysis algorithm and makes necessary research. And further improves the micro-blog movie comments emotional analysis of the correct rate.
出处 《现代计算机(中旬刊)》 2017年第2期48-51,共4页 Modern Computer
关键词 数据挖掘 情感分析 特征提取 Data Mining Emotion Analysis Feature Extraction
  • 相关文献

参考文献1

二级参考文献46

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2赵世奇,张宇,刘挺,陈毅恒,黄永光,李生.基于类别特征域的文本分类特征选择方法[J].中文信息学报,2005,19(6):21-27. 被引量:21
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 4ASEERVATHAM S, BENNANI Y. Semi-structured document categorization with a semantic kernel [ J ]. Pattern Recognition, 2009, 42 (9) : 2067-2076.
  • 5LUO P, LIN F, XIONG Y, et al. Towards combining Web classification and Web information extraction: a case study [ C ] //Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009: 1235-1244.
  • 6EICKHOFF C, SERDYUKOV P, DE VRIES A. Web page classification on child suitability [ C ] //Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 2010: 1425-1428.
  • 7BOLLEN J, PEPE A, MAO H. Modeling public mood and emotion : twitter sentiment and soeio-economic phenomena [ C ] //Proceeding of the 19th International Conference on World Wide Web, 2010.
  • 8THELWALL M, BUCKLEY K, PALTOGLOU G. Sentiment in Twitter events [ J]. Journal of the American Society for Information Science and Technology, 2011, 62 (2) : 406-418.
  • 9PHAN X, NGUYEN L, HORIGUCHI S. Learning to classify short and sparse text & Web with hidden topics from large-scale data collections [ C ] //Proceeding of the 17th International Conference on World Wide Web, 2008: 91-100.
  • 10BANERJEE S, RAMANATHAN K, GUPTA A. Clustering short texts using Wikipedia [ C ] //Proceeding of the International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007: 787-788.

共引文献32

同被引文献18

引证文献1

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部