期刊文献+

基于二进制光流描述子的运动目标提议

MOTION OBJECT PROPOSAL BASED ON BINARY OPTICAL FLOW DESCRIPTOR
下载PDF
导出
摘要 针对视频目标检测提议框存在大量冗余的问题,提出二进制光流描述子,实现视频连通目标的分离提议。通过分析目标局部运动一致性,设计二进制光流描述子,构建目标提议模型,然后利用线性支持向量机分类器求解运动目标提议参数。为充分利用二进制与或运算速度快的优势,采用二进制近似表示运动目标提议参数,快速高效地完成目标提议任务。实验针对Caltech行人数据库,快速地生成了少量高质量的运动目标提议窗口。实验结果优于现有目标提议方法。 In order to reduce the redundance of proposal windows in video object detection, a novel binary optical flow descriptor is proposed to achieve separate proposals of objects, we design the binary optical flow descriptor, for connected objects. By analysing the local motion coherence construct the object proposal model and then use linear SVM classifier to solve motion object proposal parameters. To make full use of the speed advantage of binary and/or calculation, the motion object proposal parameters are represented approximately in binary to complete object proposal tasks quickly and efficiently. The experiment on the Cahech Pedestrians dataset is carried out, and a small number of high-quality motion object p is superior to current object roposal windows are generated quickly. Experimental results show that the proposed method proposal methods.
作者 李洋 吴克伟 谢昭 孙永宣 Li Yang Wu Kewei Xie Zhao Sun Yongxuan(School of Computer and Information, Hefei University of Technology, Hefei 230009,Anhui, Chin)
出处 《计算机应用与软件》 2017年第3期127-130,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61503111 61501467)
关键词 目标提议局 部运动一致性 光流 二进制描述子 Object proposal Local motion coherence Optical flow Binary descriptor
  • 相关文献

参考文献2

二级参考文献30

  • 1张建伟,夏德深.基于双水平集的图像分割模型[J].计算机研究与发展,2006,43(1):120-125. 被引量:11
  • 2Kass M, Witkin A, Terzopoulos D. Snakes: Active contourmodels [J]. International Journal of Computer Vision, 1988,1(4): 321-331.
  • 3Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithm based on the Hamilton-Jacobiformulation [J]. Journal of Computational Physics, 1988,79(1): 12-49.
  • 4Mumford D, Shah J. Optimal approximation by piecewisesmoothes functions and associated problems [J].Communications on Pure and Applied Mathematics, 1989,42(5): 677-685.
  • 5Chan T F,Vese L A. Active contours without edges [J].IEEE Trans on Image Processing, 2001,10(2) : 266-276.
  • 6Vese L A,Chan T F. A multiphase level set framework forimage segmentation using the Mumford and Shah model [J].International Journal of Computer Vision? 2002,50(3):271-293.
  • 7Ni K,Hong B W, Soatto S,et al. Unsupervised multiphasesegmentation: A recursive approach [J], Computer Visionand Image Understanding, 2009,113(4) : 502-510.
  • 8Zhang Kaihua, Song Huihui, Zhang Lei. Active contoursdriven by local image fitting energy [J]. PatternRecognition, 2010, 43(4) : 1199-1206.
  • 9Lie J, Lysaker M,Tai X C. A binary level set model andsome applications to Mumford-Shah image segmentation [J].IEEE Trans on Image Processing, 2006,15(5) : 1171-1181.
  • 10Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level setevolution without re-initialization : A new variationalformulation [C] //Proc of CVPR'05. Piscataway, NJ: IEEE,2005: 430-436.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部