期刊文献+

加性噪声下增广容积卡尔曼滤波及其目标跟踪应用 被引量:2

AUGMENTED CUBATURE KALMAN FILTER FOR ADDITIVE NOISE AND ITS APPLICATION TO OBJECT TRACKING
下载PDF
导出
摘要 传统容积卡尔曼滤波(CKF)有良好的滤波精度和较低的计算复杂度,使其广泛被应用于目标跟踪系统。但在高维非线性和波动性大的目标跟踪系统中,3阶和高阶CKF分别存在滤波精度不足和稳定性低的问题。为提高CKF的滤波精度并保证稳定性,讨论和给出加性噪声下的增广容积卡尔曼滤波(ACKF)。在仿真中,将CKF、UKF和ACKF应用于5维高非线性目标跟踪,并分析比较三者的目标跟踪性能。研究结果表明,在高维非线性目标跟踪系统中,3阶ACKF可以获得更好目标跟踪精度和稳定性,以及可接受的计算复杂度。 Since the cubature Kalman filter (CKF) provides a good accuracy with low computational complexity, it is wildly applied in estimation and tracking systems. But for a tracking system involving high dimensionality and acute nonlinearity, 3-degree CKF and high-degree CKF encounter low accuracy and instability problems, respectively. To improve the the performance, augmented cubature Kalman filter for additive noise is discussed. In the simulation, CKF, UKF and ACKF are applied to 5-dimensional targets tracking system. Besides, their performances including accuracy, stability and complexity are compared by RMSEs. The results show that 3-degree ACKF can obtain better tracking accuracy and stability with acceptable computational complexity than UKF, 3-degree CKF and 5-degree CKF in highly nonlinear and dimensional systems.
作者 刘江 叶松庆 Liu Jiang Ye Songqing(Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China)
出处 《计算机应用与软件》 2017年第3期136-141,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61202131) 中国科学院"西部之光"项目 青年创新促进会项目(2015315)
关键词 目标跟踪 增广容积卡尔曼滤波 非线性滤波 加性噪声 Tracking Augmented CKF Nonlinear filter Additive noise
  • 相关文献

参考文献8

二级参考文献179

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 3辛云宏,杨万海.基于伪线性卡尔曼滤波的多站IRST系统跟踪技术[J].红外与毫米波学报,2005,24(5):374-377. 被引量:15
  • 4G Welch, G Bishop. An introduction to the Kalman[ M]. Department of Computer Science University of North Carolina at Chapel Hill, 2004.1 - 16.
  • 5S J Julier, J KUhlmann, H F Durrant - Whyte. A new approach for the nonlinear transformation of means and covarianees in filters and estimators[ J]. IEEE Trans on Automatic Control, 2000,45 (3) :477 -482.
  • 6Chang Wook Ahn, R S Ramakrishna. Elitism - based compact genetic algorithms[ J]. IEEE transactions on Evolutionary Computation, 2003,7 (4) :367 - 385.
  • 7S J Julier, J K Uhlmann. A consiscent, debiased method for converting between polar and Cartesian coordinate systems [ C ]. The Proc of AeroSense : The 11 th Int Symposium on Aerospace/Defense Sensing Simulation and Controls, Orando, 1997.110 - 121.
  • 8S J Julier, J K Uhlmann. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations [ C]. Proc of American Control Conf, Jefferson City,2002. 4555 - 4559.
  • 9S J Juliet, J K Uhlmann. Unscented filtering and nonlinear estimation [ C ]. Pine of the IEEE Aerospace and Electronic Systems, 2004,92 ( 3 ) :401 - 422.
  • 10E A Wan, A T Nelson. Dual estimation and the unscented transformation[ C]. Proc of the 2000 Conference,Advances in Neural In- formation Processing Systems 12. Washington: MIT Press, 2000:666 - 672.

共引文献444

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部