期刊文献+

基于多特征字典学习的害虫图像自动分类方法 被引量:7

AUTOMATIC CLASSIFICATION METHOD FOR PEST IMAGE BASED ON MULTI-FEATURE DICTIONARY LEARNING
下载PDF
导出
摘要 为提高农田害虫图像识别分类的准确率,提出一种基于多特征字典学习的害虫图像自动分类方法。首先,利用监督字典学习的方式,对每一类害虫图像构建多特征过完备字典。为进一步增强计算机在复杂情况下对害虫图像的辨识能力,应用构造的过完备字典对害虫图像进行多特征稀疏表示。最后,通过最小化害虫图像的重构误差实现自动分类。实验结果表明,与其他方法相比,该方法提高了害虫图像识别的准确率。 An automatic classification method for pest image based on multi-feature dictionary learning is developed to improve the accuracy of pest classification. With supervised dictionary learning, each pest image can be constructed as multi-feature overcomplete dictionary. In order to further enhance the abilities of identifying pest image in complex back- ground,multi-feature of pest image are sparsely represented using the constructed overcomplete dictionary. Finally, the classification of pest is achieved by minimizing reconstruction error. Experimental results show that the proposed method performs well on the classification of insect species, and outperforms several state-of-the-art methods in insect categoriza- tion.
作者 张超凡 王儒敬 谢成军 Zhang Chaofan Wang Rujing Xie Chengjun(Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031,Anhui, China School of Information Science and Technology, University of Science and Technology of China ,Hefei 230026,Anhui, China)
出处 《计算机应用与软件》 2017年第3期142-147,180,共7页 Computer Applications and Software
基金 国家自然科学基金项目(31401293) 国家科技支撑计划项目(2014BAD10B08) 安徽省科技攻关计划项目(1401032010)
关键词 多特征融合 稀疏表示 字典学习 害虫图像 完备字典 Multi-feature fusion Sparse representation Dictionary learning Pest image Overcomplete dictionary
  • 相关文献

参考文献5

二级参考文献72

共引文献100

同被引文献92

引证文献7

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部