期刊文献+

基于线性加权的自适应图像去雾算法 被引量:2

THE SELF-ADAPTIVE IMAGE DEHAZING ALGORITHM BASED ON LINEAR WEIGHTING
下载PDF
导出
摘要 在雾霾天气下,大气散射作用导致采集图像信息丢失。针对这一问题,以暗通道先验原理为基础,提出一种基于线性加权的自适应图像去雾算法。首先,在计算暗通道函数时,采用一种改进方法生成精确的暗原色图,并使用图像锐化技术确保场景边界特性;其次,针对复原图像对比度过深,定义一种自适应的线性加权方式计算准确的大气光强值,确保得到代表实际场景的透射率图;最后基于大气散射的物理模型,得到清晰的无雾复原图片。实验结果表明,该方法能有效地实现图像去雾,且具有效果好和速度快的优点。 In haze weather, the effect of atmospheric scattering lead to the missing of the self-adaptive image dehazing algorithm based on linear weighting is proposed on the channel prior. Firstly, during the calculation of dark channel function, the proposed method to generate the accurate dark primary picture, and uses the image sharpening the image information. Thus, basis of the principle of dark approach adopts an improved technique keep the boundary characteristics of the object. Then, aiming at the over-high contrast of recovered image, a self-adaptive linear weighting method is defined to calculate the accurate values of atmospheric light intensity, ensuring that the transmittance picture of actual scene is obtained- The.experimental results show that the proposed approach can reliably achieve image dehazing with good quality and efficiency.
作者 崔靖茹 李晨 潘宁 吴倩雯 Cui Jingru Li Chen Pan Ning Wu Qianwen(School of Software Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi, China Department of Medical Imaging, The First Affiliated Hospital of Xi' an Jiaotong University,Xi' an 710061, Shaanxi, China)
出处 《计算机应用与软件》 2017年第3期148-153,共6页 Computer Applications and Software
基金 国家自然科学基金青年基金项目(61403302)
关键词 图像去雾 线性加权 窗口大小 暗通道先验 Image Dehazing Linear weighted method Size of window Dark channel prior
  • 相关文献

参考文献8

二级参考文献148

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2劳丽,吴效明,朱学峰.模糊集理论在图像分割中的应用综述[J].中国体视学与图像分析,2006,11(3):200-205. 被引量:20
  • 3胡晓飞,胡栋.颅内出血CT图像血块的分割算法[J].中国体视学与图像分析,2006,11(3):206-210. 被引量:2
  • 4Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 5Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2001. 186-193.
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 7Scbechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 325-332.
  • 8Schechner Y Y, Narasimhan S G, Nayar S K. Polarization- based vision through haze. Applied Optics, 2003, 42(3): 511-525.
  • 9Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In: Proceedings of the Polarization Science and Remote Sensing II. San Diego, USA: SPIE, 2005. 36-45.
  • 10Shwartz S, Namer E, Schechner Y Y. Blind haze separation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 1984-1991.

共引文献415

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部