期刊文献+

Ti-Ni金属间化合物电子结构与力学性质的第一性原理计算 被引量:7

First-principles calculations of electronic structure and mechanical properties of Ti-Ni intermetallic compounds
下载PDF
导出
摘要 采用基于密度泛函理论(DFT)的第一性原理赝势平面波方法,计算Ti-Ni合金系中TiNi、Ti_2Ni和TiNi_3金属间化合物的平衡晶格常数、生成焓、内聚能、力学性质、德拜温度和电子结构。计算结果表明:TiNi、Ti_2Ni和TiNi_3金属间化合物均具有热力学稳定性且容易合金化生成,合金形成能力由强到弱的排序为TiNi_3、TiNi、Ti_2Ni;3种金属间化合物的晶体结构在能量上和力学上都是稳定的,结构稳定性由大到小排序依次为Ti_2Ni、TiNi、TiNi_3;TiNi和Ti_2Ni为延性相(延展性Ti_2Ni大于TiNi的),TiNi_3的延展性较差;3d电子是TiNi、Ti_2Ni和TiNi_3金属间化合物的最主要的成键电子,在这3种金属间化合物中,随着Ni相对含量的增加,平均成键电子数增多,共价键的比例增加,化学键的强度增强,金属性减弱,从而使得其弹性模量、硬度和德拜温度均逐渐升高。 The crystal structure, enthalpy of formation, cohesive energy, mechanical properties, Debye temperature and electronic structure of TiNi, Ti2Ni and TiNi3 intermetallic compounds were calculated by using first-principles ultrasoft pseudo-potential approach of the plane wave based on density functional theory (DFT). The calculated results show that three intermetallic compounds all have thermodynamic stability and are easy to form alloy. TiNi3 has the strongest alloys forming ability. The crystal structures of those intermetallic compounds are stable in energy and mechanics, the stability in descending order are as follows: Ti2Ni, TiNi, TiNi3. TiNi and Ti2Ni are ductile, and the ductility of Ti2Ni is significantly higher than that of TiNi. TiNi3 has a poor ductility. The 3d electronics are the mainly bonding electrons. As the increase of relative amounts of Ni in those intermetallic compounds, the average bonding electrons are growing, the strength of chemical bonds enhance, the metallicity weakens. This leads to gradually increase of the elasticity modulus, hardness and Debey temperature.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2016年第12期2546-2554,共9页 The Chinese Journal of Nonferrous Metals
关键词 TI-NI 金属间化合物 电子结构 力学性质 第一性原理 Ti-Ni intermetallic compound electronic structure mechanical property first-principle
  • 相关文献

参考文献6

二级参考文献26

  • 1杨扬,张新明,李正华,李青云.TA2/A3爆炸复合界面的扩散反应[J].金属学报,1995,31(4). 被引量:7
  • 2Kim J K, Yu T X, JMater Process Technol[J], 1997, 63(1-3): 33.
  • 3Yang Y, Wang B F, Hu Bet al. Mater Sci Eng A[J], 2005, 398(1-2): 291.
  • 4Wang B F, Yang Y. Mater Sci EngA[J], 2007, 452-453(7): 273.
  • 5Kahraman N, Gulenc B, Findik F et al. J Mater Process Technol[J], 2005, 169(1-2): 127.
  • 6Mori T, Kurimoto S. J Mater Process Technol[J], 1996, 56(1-4): 242.
  • 7Yamamoro A, Nakamura H, Kurahashi R. Iron & Steel[J], 1992, 79(1): 62.
  • 8Khodadad Motarjemi A, Kocak M, Ventzke V. Int J Pressure Vessels Piping[J], 2002, 79(3): 181.
  • 9Anjos M A, Vilar R, Qiu Y Y. Surf Coat Technol[J], 1997, 92(1-2): 142.
  • 10Kubota A, Ueda H, Nakamura T et al. Process Technology[J]. 1981, 19(4): 294.

共引文献62

同被引文献49

引证文献7

二级引证文献28

  • 1段永华,孙勇,鲁俐.(L1_2,D0_(22))-TiAl_3和L1_2-Ti(Al,Pt)_3电子结构与光学性质第一性原理计算[J].功能材料,2013,44(24):3591-3597. 被引量:1
  • 2马贺,陈立佳,郭连权,林琳,冷利,应彩虹.金属Al电子结构与热力学性质的第一性原理计算[J].沈阳工业大学学报,2015,37(4):399-403. 被引量:4
  • 3吴建邦,程新路,张红,熊政伟.First-principles study of structural, electronic and optical properties of ZnF_2[J].Chinese Physics B,2014,23(7):627-633.
  • 4K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.ELECTRONIC STRUCTURE OF THE ELEMENTS[J].Chinese Physics C,2014,38(9):114-115.
  • 5Dong CHEN,Jingdong CHEN,Yinglu ZHAO,Benhai YU,Chunlei WANG,Deheng SHI.Theoretical study of the elastic properties of titanium nitride[J].Acta Metallurgica Sinica(English Letters),2009,22(2):146-152. 被引量:1
  • 6姜俊颖,黄在银,米艳,李艳芬,袁爱群.纳米材料热力学的研究现状及展望[J].化学进展,2010,22(6):1058-1067. 被引量:12
  • 7LI Jin,LINGHU Rong-Feng,YANG Ze-Jin,CAO Yang,YANG Xiang-Dong.First-Principles Study of Structural,Elastic and Electronic Properties of OsSi[J].Communications in Theoretical Physics,2009,52(10):701-706.
  • 8何寒,曹建春,周晓龙,雍岐龙.取向硅钢中铜硫化物结构稳定性的赝势平面波法研究[J].热加工工艺,2010,39(10):76-79. 被引量:6
  • 9陈松,唐宇,王选理,韩艳玲,黄宇阳,邓文.Fe掺杂CuAlO_2的微结构和热电性能的正电子湮没研究[J].核技术,2010,33(7):517-521. 被引量:1
  • 10张桂林.碳层包裹的铁纳米颗粒的研究[J].仪器仪表学报,1995,16(S1):267-271. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部