期刊文献+

两阶段多峰优化算法求解纳什均衡 被引量:3

Two-Stage Multimodal Optimization Algorithm for Solving Nash Equilibrium
原文传递
导出
摘要 提出了一种两阶段多峰优化算法用于求解一个博弈中的全部纳什均衡.第一阶段首先运行带有邻域变异策略的NCDE算法进行粗粒度搜索,定位最优解的粗略位置.第二阶段运行多个CMA-ES实例在已找的位置上同时进行局部精细搜索.此外,提出了一种搜索点补充策略,用于增强演化初期的搜索能力及保持子种群的稳定性.提出的算法和6个经典算法在10个纳什均衡问题上进行了比较.实验结果表明提出的算法在5个问题上取得了最好结果,4个问题上取得的结果与其他算法相同. This paper proposed a two-stage multimodal optimization algorithm for solving all Nash Equilibrium of agame.The neighborhood based crowding differential evolution(NCDE)algorithm with neighborhood mutation is firstly conducted to search approximate positions of global optima.After NCDE runs a certain number of iterations,multiple covariance matrix adaptation evolution strategy(CMA-ES)instances are simultaneously used to perform fine search on all positions which are found by NCDE.Additionally,search point replenishment strategy(SPRS)is put forward to enhance search ability in the initial stage of evolution,and to maintain the stability of subpopulations.The proposed algorithm is compared with six state-of-the-art algorithms on ten Nash Equilibrium problems.Experimental results manifest that the proposed algorithm achieves the best results on five problems,and same results on four problems.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期444-450,共7页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(61364025 61402481) 江西省自然科学基金(20151BAB217010) 河北省自然科学基金(F2015403046) 武汉大学软件工程国家重点实验室开放基金(SKLSE2014-10-04)资助项目
关键词 纳什均衡 非合作博弈 邻域变异 协方差矩阵自适应演化策略 Nash Equilibrium non-cooperative game neighborhood mutation covariance matrix adaptation evolution strategy
  • 相关文献

参考文献3

二级参考文献37

  • 1余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 2于敏,须文波,孙俊.纳什均衡解及其QPSO算法求解[J].计算机工程与应用,2007,43(10):48-51. 被引量:5
  • 3Nair K G,Tanjith G.Solution of 3×3 Games Using Graphical Method [J].European Journal of Operational Research,1999,112:472-478.
  • 4Lemke C,Howson J.Equilibrium Points of Bimatrix Games [J].Journal of Society of Industrial and Applied Mathematics,1964,12:413-423.
  • 5Herings P J J,Peeters R J A P.A Differentiable Homotopy to Compute Nash Equilibriua of n-Person Games [J].Economic Theory,2001,18:159-186.[4] Maynard S J,Price G.The Logic of Animal Conflict [J].Nature,1973,246:15-18.
  • 6Maynard S J.Evolution and the Theory of Games [M].Cambridge,United Kingdom:Cambridge University Press,1982.
  • 7Thomas R.Genetic Algorithm Learning and Evolutionary Games [J].Journal of Economic Dynamics & Control,2001,25:1019-1037.
  • 8Pavlidis N G,Parsopoulos K E,Vrahatis M N.Computeing Nash Equilibria Through Computational Intelligence Methods [J].Journal of Computational and Applied Mathematics,2005,175:113-136.
  • 9Kennedy J,Eberhart R C.Particle Swarm Optimization [C]//Proc IEEE Int Conf Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948.
  • 10Dejong K A.Analysis of the Behavior of a Class of Genetic Adaptive System[D].Ann Arbor:Univ Michigan,1975.

共引文献46

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部