期刊文献+

基于CFSFDP与ELM相结合的半监督室内定位算法 被引量:3

A Semi-Supervised Indoor Location Algorithm Based on CFSFDP and ELM
原文传递
导出
摘要 针对室内环境复杂,难以获取足够多的有效标记数据进行定位,提出了一种将密度峰值快速搜索聚类(CFSFDP)和极限学习机(ELM)相结合的半监督室内定位算法(SLACE).SLACE利用CFSFDP聚类数据集,并标记聚类中心缺失的位置信息,扩充初始标记数据;利用ELM训练初始标记数据,根据输出阈值向量和"换位"思想扩充标记数据,提高定位准确率.实验表明:在标记数据个数相同时,该算法运行时间短,较ELM算法、BP算法而言,定位准确率明显提高. Aiming the difficulty of gaining sufficient labeled samples in complex indoor environment,this paper proposes a semi-supervised location algorithm(SLACE)based on clustering by fast search and find of density peaks(CFSFDP)and extreme learning machine(ELM).SLACE uses CFSFDP to cluster initial samples and label the unlabeled clustering centers,which helps to expand the initial labeled samples.Then SLACE uses ELM to train the labeled samples and extend the labeled samples through the output threshold vector and strategy of transposition,which improves location accuracy effectively.Comparative experiments show that with same number of labeled samples,this algorithm has low running time and outperforms original ELM and Back Propagation network,which significantly improves location accuracy.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2016年第5期451-455,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(61300186) 江苏省高校自然科学研究面上项目(13KJB510001) 苏州市物联网工程应用重点实验室项目(SZS201407)
关键词 室内定位 密度峰值快速搜索聚类 极限学习机 半监督定位算法 换位思想 indoor location clustering by fast search and find of density peaks extreme learning machine semi-su pervised location algorithm strategy of transposition
  • 相关文献

参考文献2

二级参考文献20

  • 1李鸿儒,顾树生.一种递归神经网络的快速并行算法[J].自动化学报,2004,30(4):516-522. 被引量:14
  • 2韩敏,程磊,唐晓亮.Fuzzy ARTMAP神经网络在土地覆盖分类中的应用研究[J].中国图象图形学报(A辑),2005,10(4):415-419. 被引量:11
  • 3郑相全,郭伟,葛利嘉,刘仁婷.一种基于跨层设计和蚁群优化的自组网负载均衡路由协议[J].电子学报,2006,34(7):1199-1208. 被引量:12
  • 4ASUNCION A, NEWMAN D J. UCI machine learning repository [DB/OL]. [2008-03-26]. http: //www. ies. uei. edu/ - mlearn/ MLRepository. html.
  • 5CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised Learning [M]. Cambridge:MIT Press, 2006.
  • 6BRUZZONE L, CHI M M, MARCONCINI M. A novel transductive SVM for semisupervised classification of remote-sensing images [J].IEEE Transactions on Geoscienee and Remote Sensing, 2006, 44 ( 11) : 3363-3373.
  • 7NIGAM K, MCCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM [J]. Machine Learning, 2000, 39(2-3) : 103-134.
  • 8ZHOU Z H, LI M. Tri-training:Exploiting unlabeled data using three classifiers [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
  • 9WANG W, ZHOU Z H. Analyzing co-training style algorithms [C] // Proceedings of the 18th European Conference on Machine Learning (ECML'07). Poland : Springer-Verlag, 2007:454-465.
  • 10COHEN I, COZMAN Semisupervised learning F G, SEBE N, etal. of classifiers : theory, algorithms, and their application to human-computer interaction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(12): 1553-1566.

共引文献20

同被引文献37

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部