期刊文献+

Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells

Application of AlGaInP with Sb Incorporation in Lattice-Matched 5-Junction Tandem Solar Cells
下载PDF
导出
摘要 It is well known that conventional CalnP/GMnAs/Ce three-junction (3J) solar cells are difficult to continue to ascend when the effieiencies reach 32% and 42% under AMO and AM1.5D concentrated, respectively. In AlCaInP/AiGMnAs/CalnAs/CalnNAs/Ce five-junction (5,/) solar cells, the performance of the AlGaInP, Al- CalnAs and CalnNAs sub cell is the key factor for conversion efficiency of the 5J solar cell. We investigate the AlCaInP/AlCaInAs/Ge 3J solar cell. By incorporating surfactant trimthylantimony into the AlGaInP material, the crystal quality of AICalnP is improved and the spectrum absorption range of AICalnAs is extended. The current density of each sub cell exceeds ll.3mA/cm2 as is desired. Then we apply this 3J structure to grow the lattice-matched 5J solar ceil and obtain the short circuit current of 134.96 mA, open circuit voltage of 4399.6 m V, fill factor of 81.7% and conversion efficiency of 29.87%. It is well known that conventional CalnP/GMnAs/Ce three-junction (3J) solar cells are difficult to continue to ascend when the effieiencies reach 32% and 42% under AMO and AM1.5D concentrated, respectively. In AlCaInP/AiGMnAs/CalnAs/CalnNAs/Ce five-junction (5,/) solar cells, the performance of the AlGaInP, Al- CalnAs and CalnNAs sub cell is the key factor for conversion efficiency of the 5J solar cell. We investigate the AlCaInP/AlCaInAs/Ge 3J solar cell. By incorporating surfactant trimthylantimony into the AlGaInP material, the crystal quality of AICalnP is improved and the spectrum absorption range of AICalnAs is extended. The current density of each sub cell exceeds ll.3mA/cm2 as is desired. Then we apply this 3J structure to grow the lattice-matched 5J solar ceil and obtain the short circuit current of 134.96 mA, open circuit voltage of 4399.6 m V, fill factor of 81.7% and conversion efficiency of 29.87%.
作者 Yang Zhang Qing Wang Xiao-Bin Zhang Na Peng Zhen-Qi Liu Bing-Zhen Chen Shan-Shan Huang Zhi-Yong Wang 张杨;王青;张小宾;彭娜;刘振奇;陈丙振;黄珊珊;王智勇(Institute of Laser Engineering, Beijing University of Technology, Beijing 100022 Redsolar New Energy Technology Co. Ltd., Zhongshan 528437)
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第2期126-130,共5页 中国物理快报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部