期刊文献+

屏蔽电缆X射线辐照非线性效应模拟 被引量:2

Simulation of Nonlinear Effect of Shielded Cable Irradiated by X-ray
下载PDF
导出
摘要 本文分析了X射线辐照电缆的物理过程,建立了电缆介质层辐射感应电导率(RIC)和间隙效应计算模型,采用有限元方法模拟了电缆X射线辐照非线性效应,给出了诺顿等效电流源(NCD)的非线性响应规律。模拟结果表明,仅考虑RIC效应时,随着X射线注量的增加,NCD幅度存在明显的饱和现象,波形宽度逐渐变窄;仅考虑间隙效应时,NCD幅度近似正比于间隙宽度;当同时考虑两种效应时,间隙效应将会大幅抵消RIC对NCD的影响。因此,在预估核爆环境下屏蔽电缆的X射线辐照响应时,需综合考虑RIC和间隙非线性效应的影响。 The physical processes of X-ray irradiating cable were analyzed in this paper. The calculation models of dielectric' s radiation-induced conductivity (RIC) and gap effects were built up. The two-dimensional finite-element method was employed to sim- ulate the nonlinear effect and the nonlinear regularity of the Norton-equivalent current driver (NCD) was concluded in detail. The simulation results show that the NCD's amplitude tends to be saturated and its pulse width tends to be narrower with the increase of X-ray fluence when the RIC effect exists only. The NCD's amplitude is in direct proportion to the gap width when the gap effect exists only. Meanwhile, the gap effect can counteract the RIC effect greatly when both effects are considered. Therefore, nonlinear effect caused by both effects should be taken into account for the predication of cable's responses under nuclear explosion X-ray.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2017年第3期561-566,共6页 Atomic Energy Science and Technology
基金 强脉冲辐射环境模拟与效应国家重点实验室专项经费资助(SKLIPR.1210)
关键词 RIC 间隙 非线性效应 屏蔽电缆 X射线 radiation-induced conductivity gap nonlinear effect shielded cable X-ray
  • 相关文献

参考文献4

二级参考文献23

  • 1陈海林,陈彬,李正东,易韵,陆峰.不同电磁脉冲作用下地面有限长电缆外导体感应电流的数值计算[J].强激光与粒子束,2004,16(10):1286-1290. 被引量:19
  • 2李进玺,程引会,周辉,郭红霞.屏蔽电缆对脉冲X射线响应的数值计算[J].强激光与粒子束,2006,18(6):981-984. 被引量:15
  • 3ZHONG Yufen, ZHOU Hui, LI Baozhong, et al. The research of braided shielding cable responses in DPF X-ray environments[C]∥Proceedings of the 9th National Conference on Nuclear Electronics & Nuclear Detection Technology. Beijing: [s. n.], 1999: 239-242.
  • 4HIGGINS D F, BARBARA S. Time-domain calculation of the leakage of SGEMP transients through braided cable shields[J]. IEEE Trans Nucl, 1989, 36(6): 2 042-2 049.
  • 5EDWARD E C. Radiation effects research in the 60's[J]. IEEE Trans Nucl, 1994, 41(6): 2 648-2 659.
  • 6CHADSEY W L, BEERS B L, PINE V W, et al. Radiation induced singals in cables[J]. IEEE Trans Nucl, 1976, 23(6): 1 933-1 941.
  • 7HIGGINS D F, BARBARA S. Time-domain calculation of the leakage of SGEMP transients through braided cable shields [J]. IEEE Trans Nucl, 1989, 36(6): 2 042-2 049.
  • 8HOLLAND R, SIMPSON L. Finite-difference analysis of EMP coupling to thin struts and wires [J]. IEEETrans EMC, 1981, 23(5): 88-97.
  • 9Higgins D F, Lee K S H, Marin L. System-generated EMP [J]. IEEE Transactions on Antennas and Propagation, 1978, 26(1): 14-22.
  • 10Carron N J, Longmire L. Scaling behavior of the time-dependent SGEMP boundary layer [J]. IEEE Transactions on Nuclear Science, 1978, 25(6):1329-1335.

共引文献41

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部