期刊文献+

基于多群组均衡协同搜索算法的电动汽车充放电多目标优化 被引量:4

Multi-Objective Optimization of Charging and Discharging Strategy for Electric Vehicles Based on Equilibrium-Inspired Multiple Group Search Optimization
下载PDF
导出
摘要 大规模电动汽车无序充电将会给电网安全运行带来巨大压力,合理利用V2G(vehicle to grid)技术制定最优充放电策略可以有效改善电网运行状况。在满足电动汽车充电需求的基础上,基于经典电池损耗模型和分时电价,以日负荷曲线波动最小和计及电池放电成本的用户充电成本最小为目标建立了电动汽车充放电多目标优化模型,采用多群组均衡协同搜索算法(EMGSS)进行帕累托前沿和最优折中解的求取,以滚动优化的方式满足综合考虑日间/夜间不同的随机的充电需求并进行优化计算,最大限度地实现电网侧和用户侧的双赢。通过仿真案例验证了该模型可以有效地平抑日负荷曲线波动并且降低用户充电成本。 The uncoordinated charging strategy of massive electric vehicles (EVs) will threaten the safe operation of the grid, this situ- ation can be relieved if coordinated charging/discharging strategy is developed. Based on classical battery-wear model and time-of-use price, a multi-objective optimal model for EVs' charging/discharging process is proposed to reduce the daily load fluctuation and the charging cost considering EV's charging demand. The Pareto front and the compromise solution are calculated by equilibrium-inspired multiple group search optimization with synergistic learning (EMGSS). Rolling optimization is adapted to deal with the day and night random variance of charging demand and reach the double-win of grid and EV owners. The simulation results demonstrate that daily load fluctuation is reduced effectively and EVs' charging cost is also decreased.
出处 《南方电网技术》 北大核心 2017年第1期52-57,73,共7页 Southern Power System Technology
基金 中国南方电网公司科技项目(WYKJ00000027)~~
关键词 电动汽车 有序充放电 多目标优化 多群组均衡协同搜索算法 electric vehicles charging/discharging optimization multi-objective optimization EMGSS
  • 相关文献

参考文献13

二级参考文献217

  • 1谭涛亮,张尧.基于遗传禁忌混合算法的电力系统无功优化[J].电网技术,2004,28(11):57-61. 被引量:53
  • 2赵娟,谭忠富,李强.我国峰谷分时电价的状况分析[J].现代电力,2005,22(2):82-85. 被引量:55
  • 3欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321. 被引量:187
  • 4黄伟,张建华,张聪,刘自发,魏志连,潘东立.基于细菌群体趋药性算法的电力系统无功优化[J].电力系统自动化,2007,31(7):29-33. 被引量:26
  • 5QIAN Kejun, ZHOU Chengke, ALLAN M, et al. Modeling of load demand due to EV battery charging in distribution systems [J]. IEEE Trans on Power Systems, 2011, 26(2): 802-810.
  • 6TREMBLAY O, DESSAINT L A, DEKKICHE A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]// Proceedings of IEEE Vehicle Power and Propulsion Conference, September 9-12, 2007, Arlington, TX, USA: 284-289.
  • 7CHEN M, RINCON-MORA G A. Accurate electrical battery model capable of predicting, runtime and I-V performance[J]. IEEE Trans on Energy Conversion, 2006, 21 (2): 504-511.
  • 8KROEZE R C, KREIN P T. Electrical battery model for use ira dynamic electric vehicle simulations[C]// Proceedings of IEEE Power Electronics Specialists Conference, June 15-19, 2008, Rhodes, Greece; 1336-1342.
  • 9CLEMENT NYNS K, VAN REUSEL K, DRIESEN J. The consumption of electrical energy of plug-in hybrid electric vehicles in Belgium[C]// Proceedings of the 2nd European Ele Drive Transportation Conference, May 30-June 1, 2007, Brussels, Belgium: 1-8.
  • 10DUVALL M, KNIPPING E. Environmental assessment of plug-in hybrid electric vehicles: Vol 1 national wide greenhouse gas emissions[R]. Beijing, China: Electric Power Research Institute (EPRI), 2007.

共引文献1347

同被引文献73

引证文献4

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部