期刊文献+

轮边驱动电动车的转矩协调控制方法 被引量:6

Torque coordination control strategy of in-wheel drive electric vehicle
下载PDF
导出
摘要 为了解决轮边驱动电动汽车由于控制自由度冗余易造成的操纵稳定性降低的问题,基于逻辑门限值理论设计了一种使车辆能适应转向行驶及直线行驶的驱动转矩协调综合控制系统.该控制系统考虑了车辆转向行驶时轴荷转移、向心力及轮胎侧偏等影响,实现车辆的转向差速控制,使车辆能够按照驾驶员的期望在理想道路轨迹上行驶;并通过对驱动电机转矩进行协调控制,消除非期望横摆力矩的影响,提高车辆在直线行驶过程中的操纵稳定性.仿真结果表明,所提出的转矩协调控制方法改善了轮边驱动电动汽车的操纵性能. In order to solve the problems of handling stability reduction due to redundancy of con- trol freedom degree of the in-wheel drive electric vehicle, we designed a kind of integrated vehicle driving torque control system which can make electric vehicle adapt to straight-line traction and steering based on logic threshold value theory. The control system considers the effects of axle load transfer, centripetal force and tire side slip while the vehicle is moving to achieve the steering differential control, so that the vehicle can be driven on the ideal road according to drivers' expec- tation. And the influences of the undesired yaw moment can be eliminated to improve handling stability of vehicle in the course of straight-line traction by conducting torque coordination control over driving motor. Simulation results show that the proposed torque control method can improve the control performance of in-wheel drive electric vehicle.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2017年第1期121-129,共9页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 高等学校博士学科点专项科研基金(20130009110029) 中央高校基本科研业务费专项资金(2013JBM073)~~
关键词 电动汽车 轮边驱动 转矩协调控制 electric vehicle in-wheel drive torque coordination control
  • 相关文献

参考文献4

二级参考文献29

  • 1Motoki Shino, Masao Nagai. Independent wheel torque control of small-scale electric vehicle for handling and stability improvement [ J ]. JSAE Review, 2003, 24 (4) : 449 -- 456.
  • 2Peng He, Yoichi Hori, Kamachi M, et al. Future motion control to be realized by in-wheel motored electric vehicle[C]//The 31th Annual Conference of the IEEE Industrial Electronics Society (IECON 2005), 2005 : 954 -- 962 .
  • 3Makoto Kamachi, Kevin Waiters. A research of direct yaw-moment control on slippery road for in-wheel motor vehicle[C]/// EVS22, 2006:2 122-- 2 133.
  • 4Jeongrnin Kim, Hyunsoo Kim. Electric vehicle yaw rate control using independent in-wheel motor[ C] ff Proceedings of Power Conversion Conference, 2007 : 705 -- 710.
  • 5Eiichi Ono, Yoshikazu Hattori, Muragishi Y, et al. Vehicle dynamics control based on tire grip margin[C] //AVEC04, 2004 : 531-- 536.
  • 6Eiichi Ono, Yoshikazu Hattori, Muragishi Y, et al. Vehicle dynamics integrated control for four-wheel-distributed steering and four-wheel-distributed traction/braking systems[J]. Vehicle System Dynamics, 2006, 44(2) : 139-- 151.
  • 7Ossama Mokhiamar, Masato Abe. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control[J ]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(4) :753--763.
  • 8Ossama Mokhiamar, Masato Abe. How the four wheels should share forces in an optimum cooperative chassis control [J ]. Control Engineering Practice, 2006, 14 (3) : 295 -- 304.
  • 9Osamu Nishihara, Hirmitsu Kumamoto. Minimax optimizations of tire workload exploiting complementarities between steering and traction/braking force distributions[ C]//AVEC06, 2006 : 713 -- 718.
  • 10Tjoennas J, Johansen T A. Adaptive optimizing dynamic control allocation algorithm for yaw stabilization of an automotive vehicle using brakes[C]//14th Mediterranean Conference on Control and Automation, 2006:1- 6.

共引文献104

同被引文献88

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部