期刊文献+

Draft Genome Sequence of Mentha Iongifolia and Development of Resources for Mint Cultivar Improvement 被引量:6

Draft Genome Sequence of Mentha Iongifolia and Development of Resources for Mint Cultivar Improvement
原文传递
导出
摘要 The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. Desirable oil characteristics and resistance to the fungal disease Verti- cillium wilt are top priorities for the mint industry. However, cultivated mints have complex polyploid ge- homes and are sterile. Breeding efforts, therefore, require the development of genomic resources for fertile mint species. Here, we present draft de novo genome and plastome assemblies for a wilt-resistant South African accession of Mentha Iongifolia (L.) Huds., a diploid species ancestral to cultivated peppermint and spearmint. The 353 Mb genome contains 35 597 predicted protein-coding genes, including 292 disease resistance gene homologs, and nine genes determining essential oil characteristics. A genetic linkage map ordered 1397 genome scaffolds on 12 pseudochromosomes. More than two million simple sequence repeats were identified, which will facilitate molecular marker development. The M. Iongifolia genome is a valuable resource for both metabolic engineering and molecular breeding. This is exemplified by employing the genome sequence to clone and functionally characterize the promoters in a peppermint cultivar, and demonstrating the utility of a glandular trichome-specific promoter to increase expression of a biosynthetic gene, thereby modulating essential oil composition. The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. Desirable oil characteristics and resistance to the fungal disease Verti- cillium wilt are top priorities for the mint industry. However, cultivated mints have complex polyploid ge- homes and are sterile. Breeding efforts, therefore, require the development of genomic resources for fertile mint species. Here, we present draft de novo genome and plastome assemblies for a wilt-resistant South African accession of Mentha Iongifolia (L.) Huds., a diploid species ancestral to cultivated peppermint and spearmint. The 353 Mb genome contains 35 597 predicted protein-coding genes, including 292 disease resistance gene homologs, and nine genes determining essential oil characteristics. A genetic linkage map ordered 1397 genome scaffolds on 12 pseudochromosomes. More than two million simple sequence repeats were identified, which will facilitate molecular marker development. The M. Iongifolia genome is a valuable resource for both metabolic engineering and molecular breeding. This is exemplified by employing the genome sequence to clone and functionally characterize the promoters in a peppermint cultivar, and demonstrating the utility of a glandular trichome-specific promoter to increase expression of a biosynthetic gene, thereby modulating essential oil composition.
出处 《Molecular Plant》 SCIE CAS CSCD 2017年第2期323-339,共17页 分子植物(英文版)
关键词 aromatic plant essential oil GENOME MINT Verticillium wilt aromatic plant, essential oil, genome, mint, Verticillium wilt
  • 相关文献

同被引文献49

引证文献6

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部