期刊文献+

分数阶Duffing振子的组合共振 被引量:7

Combination resonance of Duffing oscillator with fractional-order derivative
下载PDF
导出
摘要 研究了2个谐波激励作用下含分数阶微分项的Duffing振子的一类组合共振,利用多尺度法得到了2ω1+ω2型组合共振的一次近似解析解,分析了定常解的稳定性。应用奇异性理论研究了幅频响应分岔方程,得到了开折参数平面的转迁集和所有区间上分岔曲线的拓扑结构。最后通过数值仿真分析了系统参数对组合共振幅频响应的影响。研究表明:分数阶微分项即具有阻尼特性又具有刚度特性,选择合理的分数阶微分项参数可以有效改善系统的响应特性。 The combined resonance of a Duffing oscillator with fractional-order derivative under a bi-harmonic external excitation is studied. The method of multiple scales is utilized to seek the approximately analytical solution, the amplitude-frequency curve and to study its stability conditions. Then, the system's singularity is analyzed completely, the transition sets and the bifurcation diagrams in various regions of the parameter plane are obtained. The numerical simulation is also conducted to analyze the effects of the parameters in the fractional system on the steady state responses. It is found that the fractional-order derivatives had both damping and stiffness effects, some of which are applicable to some vibration control problems.
出处 《振动工程学报》 EI CSCD 北大核心 2017年第1期28-32,共5页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(11227201 11472179 11372198 11572206) 河北省高等学校创新团队领军人才计划(LJRC018)
关键词 DUFFING振子 分数阶微分 组合共振 多尺度法 奇异性理论 Duffing oscillator fractional-order derivative combination resonance method of multiple scales singularity theory
  • 相关文献

参考文献4

二级参考文献52

  • 1张卫,徐华,清水信行.分数算子描述的黏弹性体力学问题数值方法[J].力学学报,2004,36(5):617-622. 被引量:11
  • 2Oldham K B, Spanier J 1974 The Fractional Calculus-Theory and Applications of Differentiation and Integration to Arbitrary Order (New York: Academic Press) pl.
  • 3Podlubny I 1999 Fractional Differential Equations (London: Aca- demic Press) pl0.
  • 4Petras 12011 Fractional-OrderNonlinear System (Beijing: Higher Education Press) p 19.
  • 5Rossikhin Y A, Shitikova M V 2010 Appl. Mech. Rev. 63 010801.
  • 6Riewe F 1997 Phys. Rev. E 53 3581.
  • 7Wang Z Z, Hu H Y 2010 Sci. China Phys. Mech. 53 345.
  • 8Wang Z Z, Du M L 2011 Shock Vib. 18 257.
  • 9Rossikhin Y A, Shitikova M V 1997 Acta Mech. 120 109.
  • 10Li G G, Zhu Z Y, Cheng C J 2011 Appl. Math. Mech. 22 294.

共引文献40

同被引文献52

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部