期刊文献+

甲基丙烯酸甲酯可逆加成—断裂链转移聚合动力学

Kinetics of methyl methacrylate reversible addition-fragmentation chain transfer polymerization
下载PDF
导出
摘要 甲基丙烯酸甲酯(MMA)是制备不同结构和性能聚合物的重要成分之一。为了研究MMA的可逆加成—断裂链转移聚合动力学等相关参数,合成了苯甲酸-2-腈基异丙基二硫代酯(CPDB)为RAFT试剂进行本体和细乳液聚合。在本体和细乳液聚合中,CPDB浓度越高,聚合速率越低,其中细乳液"缓聚"现象明显;聚合指数-ln(1-x)与聚合时间呈较好的线性关系,具有可控/"活性"聚合的特征;聚合物的数均分子量Mn随转化率线性增加,分子量分布宽度PDI随着CPDB浓度的增加,分布逐渐变窄等。同时,在细乳液聚合中,CPDB浓度增加,乳胶粒粒径越大,分布也越宽,聚合速率也越低等。 Methyl methacrylate(MMA) was an important ingredient for different structures and properties of copolymers.In order to study MMA reversible addition-fragmentation chain transfer(RAFT) polymerization kinetics,bulk and miniemulsion for MMA polymerization were performed with 2-cyanoprop-2-yl dithiobenzoate(CPDB) as RAFT agent.The conversion decreased with increasing CPDB concentration in bulk and miniemulsion system,and the retardation was more obvious in miniemulsion than in bulk system.The linear relationship between the polymerization index-ln(1-x) and the polymerization time was good,which has the controlled/"living"polymerization characteristics.The Molucular weight of PMMA in bulk and miniemulsion systems increased linearly,and its distribution became much narrower along with the increasing of conversion,when CPDB concentration increased.Moreover,the particle size increased with CPDB concentration increaseing in miniemulsion,and the distribution became much broader.
作者 王振希 柯春兰 张健 欧阳球林 WANG Zhenxi KE Chunlan ZHANG Jian OUYANG Qiulin(College of Scienees,Nanehang Institute of Technology,Nanehang 330099, China No. 3 Middle School of Nanchang, Nanchang 330096, China)
出处 《南昌工程学院学报》 CAS 2017年第1期1-6,共6页 Journal of Nanchang Institute of Technology
基金 国家自然科学基金资助项目(51303074) 南昌工程学院大学生科研训练计划项目(2015)
关键词 甲基丙烯酸甲酯 可逆加成—断裂链转移 细乳液聚合 缓聚 methyl methacrylate(MMA) reversible addition-fragmentation chain transfer(RAFT) miniemulsion polymerization retardation
  • 相关文献

参考文献3

二级参考文献41

  • 1袁俊杰,周树学,游波,武利民.纳米二氧化硅包覆颜料黄的研究[J].高等学校化学学报,2005,26(11):1998-2001. 被引量:6
  • 2林霞,何晓晓,王柯敏,谭蔚泓.一种基于二氧化硅微颗粒的基因载体的制备新方法[J].高等学校化学学报,2006,27(5):845-848. 被引量:3
  • 3Georges M K, Veregin R P N, Kazmaier P M, Hamer G K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993, 26 : 2987 -2988.
  • 4Wang J S, Matyjaszwski K. Control/ " living" radical polymerization in the presence of transition metal complex. J. Am. Chem. Soc., 1995, 117:5614 -5615.
  • 5Chiefari J, Chong Y K, Ercole F, Krstina J, Rizzardo E. Living free radical polymerization by reversible addition fragmentation chain transfer : the RAFT process. Macromolecules, 1998, 31: 5559 -5562.
  • 6Bathfield M, Spitz R, Charreyre M T, Delair T. Versatile precursors of functional RAFT agents. Application to the synthesis of bio-related end functionalized polymers. J. Am. Chem. Soc., 2006, 128:2546-2547.
  • 7Sun X Y, Luo Y W, Wang R, Li B G, Zhu S P. Semibatch RAFT polymerization for producing ST/BA copolymers with controlled gradient composition profiles. AIChEJ. , 2008, 54 (4): 1073- 1087.
  • 8Hong C Y, You Y Z, Pan C Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature- responsive shells by surface RAFT polymerization. Chemistry of Materials, 2005, 17:2247 -2254.
  • 9Ge Z S, Xie D, Chen D Y. Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity. Macromolecules, 2007, 40:3538- 3546.
  • 10Quinn J F, Rizzardo E, Davis T P. Ambient temperature reversible addition fragmentation chain transfer polymerization. Chemical Communications, 2001 ( 11 ) : 1044 -1045.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部