期刊文献+

采用双字典协作稀疏表示的光照及表情顽健人脸识别 被引量:2

Illumination and expression robust face recognition using collaboration of double-dictionary's sparse representation-based classification
下载PDF
导出
摘要 提出一种采用小波变换(WT)及双字典协作稀疏表示分类(CSRC)的人脸识别方法——WT-CSRC。WT-CSRC首先利用PCA(主成分分析)将小波分解后的人脸高频细节子图融合成高频细节图像;然后用PCA分别对人脸低频图像和高频细节图像进行特征提取,构造低频和高频特征空间,并用训练样本在两种特征空间上的投影集构造低频字典和高频字典;最后将测试样本在两种字典上进行稀疏表示,并引入互相关系数以增强人脸识别的可靠性,实现了人脸的协作分类。实验结果表明,提出的方法提高了人脸识别率,对光照变化及表情变化具有较强的顽健性,并且具有较高的时间效率。 A face recognition method named WT-CSRC was proposed by using wavelet transform(WT) and a collaboration of double-dictionary 's sparse representation-based classification(CSRC). Firstly, the proposed method used principal component analysis(PCA) to achieve the fusion of three high-frequency detail sub-images which were generated by WT, and a integrated high-frequency detail image could be obtained; then, features extracted from the low-frequency images and high-frequency detail images by PCA were used to construct the low-frequency feature space and high-frequency detail space; and low-frequency dictionary and high-frequency dictionary could be constructed by samples' projection on two kinds of feature space. Finally, face images could be classified by a collaborative classification via sparse representation in two dictionaries, and the reliability of the recognition could be enhanced by using the cross correlation coefficient. Experimental results show that, the proposed method has high recognition rate with strong illumination and expression robustness with acceptable time efficiency.
出处 《电信科学》 北大核心 2017年第3期52-58,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61471212) 浙江省自然科学基金资助项目(No.LY16F010001) 宁波市自然科学基金资助项目(No.2016A610091)~~
关键词 人脸识别 双字典 协作稀疏表示 互相关系数 face recognition double-dictionary collaborative sparse representation cross correlation coefficient
  • 相关文献

参考文献4

二级参考文献36

  • 1Xydeas C S, Petrovic V. Gradient-based Multiresolution Image Fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228-237.
  • 2Zheng Youzhi, Hou Xiaodong, Bian Tiantian, et al. Effective Image Fusion Rules of Multi-scale Image Decomposition[C]//Proc.of the 5th International Symp. on Image and Signal Processing and Analysis. lstanbul, Turkey: [s. n.], 2007.
  • 3Smith L 1. A Tutorial on Principal Components Analysis[EB/OL]. (2002-02-01). http://csnet.Otago.ac.nz/cosc453/studenttutorials/pr incipalcomponents.pdf.
  • 4Rencher A C. Multivariate Statistical Inference and Applica- tions[M]. [S. 1.]: John Wiley and Sons, Inc., 1998.
  • 5Piella G, Heijmans H. New Quality Measures for Image Fu-sion[C]//Proc, of the 7th International Conference on Information Fusion. Stockholm, Sweden: [s. n.], 2004.
  • 6庄哲民,张阿妞,李芬兰.基于优化的LDA算法人脸识别研究[J].电子与信息学报,2007,29(9):2047-2049. 被引量:25
  • 7BERTALMIO M, SAPIRO G, CASELLES V, et al.. Proceedings of international conference on computer graphics and interactive techniques[C]. New Orleans, Louisiana USA, 2000,1 : 417-424.
  • 8CRIMINISI A, PEREA P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting [ J ]. IEEE Transactions on Image Processing, 2004,13(9) : 1200-1212.
  • 9ZHOU M,CHEN H,PAISLEY J,et al.. Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images [J]. IEEE Transactions on Image Processing, 2012,21 (1) : 130-144.
  • 10WANG ZH, BOVIK A C, SHEIKH H R, et al.. Image quality assessment from error visibility to structural similarity [J].IEEE Transactions on Image Processing, 2004,13 (4) : 600-612.

共引文献73

同被引文献23

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部