期刊文献+

基于证据理论的测量不确定度评定与分析 被引量:17

Evaluating and Analyzing Measurement Uncertainty Based on the Theory of Evidence
下载PDF
导出
摘要 针对GUM推荐的基于概率统计理论的不确定度表达方法存在的局限性,提出了一种更为通用的基于证据理论的随机模糊变量(RFV)方法,实现对测量结果及其不确定度的评定。根据有效测量信息构建了RFV隶属函数以及相应的数学理论框架,通过简单的例子给出了如何运用RFV进行不确定度评定的流程。实验结果表明,该方法既可以提供测量结果的置信区间也可以给出不确定度分量的贡献程度。通过与GUM方法的比较,当存在不可忽略的非随机分量影响时,该方法比概率统计方法能更客观地描述测量结果离散程度。 Deal with the limitations of GUM recommendations to express the measurement uncertainty based on a probabilistic and statistical theory, a more general approach which framed within the theory of the evidence was proposed. The method can represent the measurement result and its associated uncertainty in terms of random-fuzzy variables. An exhaustive mathematical framework and RFV membership functions was established according to the available information. The procedure for expressing the measurement uncertainty in terms of RFV was given by simple examples. The experimental results reported show that RFV are capable of both providing all the intervals of confidence and representing the different contributions to uncertainty. By compared with the approach of the GUM, the RFV method allows representing the dispersion of the values that could reasonably be attributed to the measured in a more suitable way than the probability theory, especially when no negligible nonrandom effects are present.
机构地区 中国人民解放军
出处 《计量学报》 CSCD 北大核心 2017年第2期252-256,共5页 Acta Metrologica Sinica
关键词 计量学 证据理论 测量不确定度 随机模糊变量 评估 metrology theory of evidence measurement uncertainty random fuzzy variables evaluation
  • 相关文献

参考文献1

二级参考文献9

  • 1Mc Clean S, Scotney B. Using evidence theory for the integration of distributed database [J]. International Journal of Intelligent Systems, 1997, (12):763-776.
  • 2Pedrvcz W. Fuzzy Set in Pattern Recognition:Methodology and Methods [J]. Pattern Recognition. 1990, 23 (1/2):120-146.
  • 3Resconi G, Murai T, Shimbo M. Uncertainty and the Semantic Field [J]. Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000, (2):581-584.
  • 4Smets P. The Combination of Evidence in Transferable Belief Model [J]. Pattern Analysis & Machine Intelligence. 1990, (5):447-458.
  • 5Smets P. The Degree of Belief in a Fuzzy Set [J]. Information Science. 1981, (1):1-19.
  • 6Yen John. Generalizing the D-S Theory to Fuzzy set [J]. IEEE Trans. on System. 1990, (3):559-570.
  • 7Mahler R. Combning Ambiguous Evidence with Respect to Ambiguous a Priori Knowledge, Part Ⅱ:Fuzzy Logic [J]. Fuzzy Sets & Systems. 1995, 75:319-354.
  • 8Romer C, Kandel A. Constraints on Belief Function Imposed by Fuzzy Random Variables [J]. IEEE Trans. on System, 1995, 25 (1):86-99.
  • 9Wierman M J. Measuring Conflict Evidence Theory [A]. IFSA World Congress and 20th NAFIPS International Conference [C]. 2001. 1741-1745.

共引文献5

同被引文献116

引证文献17

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部