期刊文献+

基于评分和项目特征的群组推荐方法 被引量:6

Group recommendation method based on ratings and item features
下载PDF
导出
摘要 针对现有群组推荐方法准确率偏低的问题,提出了一种基于评分与项目特征相结合的方法。首先综合时间因素对评分的影响和项目领域特征,利用改进的TF-IDF方法构建成员在各个特征上的偏好模型;然后考虑群体用户间的相互作用,从项目特征属性均值相似性权重和特征属性频度权重两个方面来得到群体偏好模型;最后计算群组在项目特征和评分上的综合相似度,进行预测评分并推荐。通过在Movie Lens数据集上进行实验,表明本方法比现有方法的准确率有明显提高。 To solve low accuracy problems of existing group recommendation methods, this paper proposed a new method based on ratings and item features. Firstly, considering effect of time factor on the score and item features, it used the improved TF-IDF method to build preference model for group members in the various features. Then, it considered the interaction between users in group, two aspects of the mean of item feature similarity weights and item feature frequency weights to get group preference model. Finally, it calculated comprehensive similarity for group on item feature and the score, forecast rates and recommend items. Experimental results with MovieLens data set shows that the method has significantly improved over the accuracy of existing methods.
出处 《计算机应用研究》 CSCD 北大核心 2017年第4期1032-1035,1046,共5页 Application Research of Computers
基金 国家创新基金项目(11C26214305383) 国家发改委信息安全产品专项基金项目(发改办高技[20091886号])
关键词 群组推荐 成员偏好模型 群组偏好模型 综合相似度 group recommendation user preference model group preference model comprehensive similarity
  • 相关文献

参考文献5

二级参考文献113

  • 1徐斌,刘赛,康立山,郑刚.基于遗传算法的信息检索技术[J].计算机工程,2004,30(9):74-75. 被引量:14
  • 2张剑,郭燕慧,钟义信.基于特征项的群组信息推荐算法[J].计算机工程与应用,2004,40(15):4-5. 被引量:6
  • 3SALTON G, WONG A, YANG C.S. A vector space model for automatic indexing [ J ]. Communications of the ACM, 1975,18 ( 11 ) : 613- 620.
  • 4DEERWESTER S, DUMAIS S, FURNAS G, et al. Indexing by latent semantic analysis[ J]. Journal of the American Society for Information Science, 1990,41 ( 6 ) : 391 - 407.
  • 5XING Zheng-zheng, PEI Jian, YU P. Early prediction on time series : a nearest neighbor approach [ C ]//Proc of the 21 st International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers ,2009 : 1297-1302.
  • 6CHEN Ji-song, YEH C H, CHAU R. Identifying multi-word temps by text-segments[ C ]//Proc of the 7th International Conference on Webage Information Management Workshops. Washington DC:IEEE Computer Society,2006 : 10-19.
  • 7ZHANG Wen, YOSHIDA T, TANG Xi-jin. A comparative study of TF * IDF, LSI and multi-words for text classification [ J]. Expert Systems with Applications,2011,38 (3) :2758-2765.
  • 8SOUCY P, MINEAU G. Beyond TF-IDF weighting for text categorization in the vector space mode [ C]//Proc of the 19th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers ,2005 : 1130-1135.
  • 9ZHANG Yun-tao, GONG Ling, WANG Yortg-cheng. An improved TF-IDF approach for text classification[ J ]. Journal of Zhejiang Universify Science ,2005,6A( 1 ) :49-55.
  • 10NOVOVICOVA J, MALIK A, PUDIL P. Feature selection using improved mutual information for text classification [ C ]//Proc of Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition. Berlin:Springer,2004: 1010-1017.

共引文献339

同被引文献42

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部