期刊文献+

多特征分类识别算法融合的网络钓鱼识别技术 被引量:6

Phishing recognition technology based on fusion of multiple features classification and recognition algorithm
下载PDF
导出
摘要 针对页面特征提取实时性差的问题进行了研究,提出将特征分类,并行提取、检测、再融合结果的方法。首先提取三个类别的主要特征,包括文本、视觉和网络链接;然后分别利用贝叶斯算法、EMD算法以及网络爬虫来进行分类,并且基于后验概率来确定权值的最终选取;最后把这三个分类结果进行融合。通过对贝叶斯、加权和加权贝叶斯的比较,从正确率、漏报率和误报率对算法进行评估。实验表明采用加权贝叶斯的方法来进行融合计算效果最佳,具有较高的准确率和较低的误报率和漏报率,提高了检测的精度和实时性。 This paper studied the view of the problem of poor real-time performance of page feature extraction, and proposed the method of feature classification, parallel extraction, detection and refusion results. First it extracted the main features of the three categories,including text, visual and Internet connection. Then,it used the Bayesian algorithm, EMD algorithm and Web crawler to classify. And determined the weight of the final selection based on the posterior probability. Finally, the fusion of these three classification results. Experiments show that a phishing recognition based on weighted Bayesian algorithm has better performance, through the comparison of Bias ,weighted and weighted Bias, which evaluates the algorithm according to the cor- rect rate, false negative rate and false alarm rate. The accuracy rate can provide higher to improve the accuracy of detection, while ensuring low false positives and false negatives to improve the real-time of detection.
出处 《计算机应用研究》 CSCD 北大核心 2017年第4期1129-1132,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61202006) 南通市科技计划资助项目(KB2012027)
关键词 网络钓鱼 特征分类 识别 算法融合 加权贝叶斯 phishing feature classification recognition algorithm fusion weighted Bayesian
  • 相关文献

参考文献7

二级参考文献75

  • 1张恒博,欧宗瑛.一种基于色彩和灰度直方图的图像检索方法[J].计算机工程,2004,30(10):20-22. 被引量:40
  • 2钱榕,徐新华,郑莹,杨炳儒.智能专题化信息搜集Crawler[J].计算机工程,2006,32(3):57-59. 被引量:4
  • 3罗海飞,吴刚,杨金生.基于贝叶斯的文本分类方法[J].计算机工程与设计,2006,27(24):4746-4748. 被引量:14
  • 4Pan Ying, Ding Xuhua. Anomaly based Web phishing page detection//Proceedings of the 22nd Annual Computer Securi- ty Applications Conference. Washington, DC, USA, 2006: 381-393
  • 5Fu Anthony Y, L W, Deng Xiaotie. Detecting phishing Web pages with visual similarity assessment based on earth mov- er's distance (EMD). IEEE Transactions on Dependable and Secure Computing, 2006, 3(4): 301-311
  • 6Liu W, G H, Liu X, Zhang M, Deng X. Phishing Webpage deteetion//Proeeedings of the 8th International Conference on Documents Analysis and Recognition. Seoul, Korea, 2005:560-564
  • 7Nesbitt K V, Friedrich C. Applying gestalt principles to animated visualizations of network data//Proceedings of the 6th International Conference on Information Visualisation. Boston, USA, 2002:737-743
  • 8Kim Duck Hoon, Yun Il Dong, Lee Sang Uk. A new attributed relational graph matching algorithm using the nested structure of earth mover's distance//Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004). Cambridge, UK, 2004, 1:48-51
  • 9Dhamija Rachna, Tygar J D. The battle against phishing: Dynamic security skins//Proeeedings of the 2005 Symposium on Usable Privacy and Security Table of Contents. Pittsburgh, Pennsylvania, 2005:77-88
  • 10Inomata A, Rahman M, Okamoto T, Okamoto E. A novel mail filtering method against phishing//Proceedings of the Conference on Communications, Computers and signal Processing (PACRIM 2005), 2005:221-224

共引文献82

同被引文献44

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部