期刊文献+

一类非线性弱奇异多重积分不等式中未知函数的估计及其应用 被引量:1

Estimation of unknown function of a class of nonlinear weakly singular triple integral inequality and its application
下载PDF
导出
摘要 研究了一类非线性弱奇异多重积分不等式,被积函数中含有积分变量,积分项外包含了非常数项,利用离散Jensen不等式、Cauchy-Schwarz积分不等式、变量替换技巧和放大技巧等分析手段,给出了不等式中未知函数的上界估计.最后举例说明所得结果可以用来研究弱奇异积分方程解的定性性质. A class of nonlinear weakly singular multiple integral inequalities are investigated in this paper, which include a nonconstant term outside the integrals, and integral variable is included in the integrands in the integral inequality. The upper bounds of the embedded unknown functions are estimated explicitly by adopting some analysis techniques, such as discrete Jensen inequality, Cauchy-Schwarz integral inequality, the techniques of change of variable, and the method of amplification. The derived results can be applied in the study of qualitative properties of solutions of multiple fractional integral equations.
作者 黄基廷 王五生 HUANG Ji-ting WANG Wu-sheng(School of Mathematics and Statistics, Hechi University, Yizhou 546300, Guangxi, Chin)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2017年第2期8-12,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11561019 11161018) 广西自然科学基金资助项目(2012GXNSFA A053009) 广西高等学校科研自治项目(KY2015ZD103 KY2015YB257)
关键词 弱奇异三重积分不等式 离散Jensen不等式 Cauchy-Schwarz积分不等式 上界估计 weakly singular triple integral inequalities discrete Jensen inequality Cauchy-Schwarz integral inequality estimation of upper bound
  • 相关文献

参考文献6

二级参考文献54

  • 1Agarwal R P, Deng S and Zhang W. Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput., 2005, 165: 599-612.
  • 2Cheung W S. Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal., 2006, 64: 2112-2128.
  • 3Ma Q H, Cheung W S. Some new nonlinear difference inequalities and their applications. J. Comput. Appl. Math., 2007, 202: 339-351.
  • 4Gollwitzer H E. A note on a functional inequality. Proc. Amer. Math. Soc., 1969, 23: 642-647.
  • 5Pachpatte B G. Inequalities for Differential and Integral Equations. New York: Academic press, 1998.
  • 6Wang W S. A generalized retarded Gronwall-like inequality in two variables and applications to BVP. Appl. Math. Comput., 2007, 191: 144-154.
  • 7Zhang W.N. and Deng S.F., Projected Gronwall-Bellman,s inequality for integrable functions, Math. Comput.Modelling, 2001, 34(3/4): 393-402.
  • 8Choi, S.K., Deng S.F., Koo, N.J. and Zhang W.N., Nonlinear integral inequalities of Bihari-Type withoutclass H, Math. Inequalities AppL, 2005, 8(4): 643-654.
  • 9Pachpatte, B.G., Inequalities for Differential and Integral Equations, London: Academic Press, 1998.
  • 10Wang W.S., A generalized retarded Gronwall-like inequality in two variables and applications to BVP, Appl.Math. Comput, 2007,191(1): 144-154.

共引文献33

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部