期刊文献+

矩阵的秩和非零特征值个数的关系研究

Discussions on the Relationship Between Ranks and Numbers of Non-zero Eigenvalues of Matrices
下载PDF
导出
摘要 矩阵的秩和非零特征值个数是矩阵的重要不变量,研究二者关系也成为线性代数一个基本的问题.已有的文献分别给出了n阶矩阵的秩和非零特征值个数相等或相差n-1的充要条件.而矩阵指数又是矩阵的重要不变量,对复矩阵而言它指矩阵零特征值约当块的最大阶数.在已有文献基础上,研究了复数域上矩阵的秩和非零特征值个数二者的差与矩阵指数的关系,得到了矩阵的秩和非零特征值个数的差用矩阵指数刻画的一个充分必要条件,推广了已有文献的结果. The rank and the number of non-zero eigenvalues of a matrix are two important invariants and the relation between these two values is a basic problem in the linear algebra. Some authors have described the necessary and sufficient conditions for that the rank and the number of non-zero eigenvalues are equal or have a gap of n-1. On the other side, the index of matrix is another important invariant, which, roughly speaking, is the maximal size of the zero eigenvalues in the canonical form of a complex matrix. Based on the existing research results, the relation of the gap between the rank and the number of non-zero eigenvalues with the index of matrix was investigated, and the necessary and sufficient conditions for these invariants were obtained, which is a generalization of some known results.
作者 朱灿 李亦
出处 《上海理工大学学报》 CAS 北大核心 2017年第1期12-14,24,共4页 Journal of University of Shanghai For Science and Technology
基金 上海理工大学教师教学发展研究项目(CFTD17016Z)
关键词 矩阵的秩 特征值 约当 矩阵指数 rank of matrix eigenvalue canonical form index of matrix
  • 相关文献

参考文献7

二级参考文献41

  • 1鲍文娣,李维国.关于任意三矩阵秩的一点注记[J].苏州科技学院学报(自然科学版),2005,22(2):39-43. 被引量:5
  • 2于清江,包研科.用n阶方阵的迹判定其互异特征值的个数[J].大学数学,2006,22(5):157-159. 被引量:2
  • 3林荣珍,江飞.3-幂零矩阵的相似等价类的计数[J].数学研究,2006,39(4):394-400. 被引量:8
  • 4杨忠鹏,林志兴.矩阵方幂的秩的一个恒等式及应用[J].北华大学学报(自然科学版),2007,8(4):294-298. 被引量:15
  • 5Jerjy K Baksalary,Oskar Maria Backsalary,George P H Styan.Idempotency of Linear Combinations of an Idempotent Matrix and Tripotent Matrix[J].Linear Algebra and Its Applications,2003,354(291):21-34.
  • 6Benitez J,Thome N.Idempotency of Linear Combinations of an Idempotent Matrix and T-potent Matrix That Commeute[J].Linear Algebra and Its Applications,2005,403:414-418.
  • 7Peng Chunyuan,Li qihui,Du Hongke.Generalized n-idempotents and Hyper-generalized n-idempotents[J].Northeast Math J,2006,22(4):387-394.
  • 8Leila lebtahi,Nestor Thome.A Note on K-generalized Projections[J].Linear Algebra and Its Applications,2007,420(2-3):572-575.
  • 9Yongge Tian,George P H Styan.Rank Equalities for Idempotent and Involutory Matrices[J].Linear Algebra and Its Applications,2001,335(1):101-117.
  • 10Horn R A,Johnson C R.Matrix Analysis[M].New York:Cambridge University Press,1985:145.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部