期刊文献+

微博网络中用户主题兴趣相关性及主题信息扩散研究 被引量:9

Research on Correlation of Users′ Topic Interests and Topic Information Diffusion in Microblog Networks
下载PDF
导出
摘要 运用Twitter-LDA主题模型对新浪微博数据进行了主题分析,基于用户主题兴趣相关性的研究表明用户间的主题兴趣具有三度相关性,同一主题兴趣下三度以内粉丝的发文数随用户发文数增加而波动式增加,各度粉丝与用户主题兴趣的相似度随粉丝度数的增加而下降。通过分析比较不同主题类别微博的扩散差异,发现生活情感类的信息最受用户欢迎,不同主题类别微博被转发的概率存在显著差异,平均转发数相差可达10倍,微博信息扩散树中各类主题在微博信息扩散深度、扩散时间间隔和用户的扩散能力方面都表现出不同的特征。 The topic analysis on the Sina microblog data is studied by using the Twitter-LDA topic model. The analysis based on correlation of users' topic interests shows that topic interests between users follow the three degrees of correlation. Within the same topic interest when the number of microblogs that users publish increases, the number of microblogs that their fans within three degrees publish also increases in fluctuation, and the similarity of topic interests between users and their multi-degree fans decreases with the increase of degree. Through the analysis and comparison of the diffusion difference of diverse topic categories, we find that users prefer the information with lifestyle topic, reposting probability is significantly different among microblogs within different topic categories, and the average reposting count can be 10 times in difference. In microblog information diffusion trees, diffusion depth, diffusion time interval and users' diffusion ability all show different characteristics for microblogs with different topic categories.
作者 罗春海 刘红丽 胡海波 LUO Chun-hai LIU Hong-li HU Hai-bo(School of Business, East China Univcrsity of Seience and Teehnology Xuhui Shanghai 20023)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第2期458-468,共11页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61473119 61104139) 中央高校基本科研业务费(WN1524301)
关键词 信息扩散 微博网络 主题分析 用户行为 information diffusion microblog network topic analysis user behavior
  • 相关文献

参考文献7

二级参考文献201

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:73
  • 2R. Lahan. The Economics of Attention[M]. Univer- sity of Chicago Press, 2006.
  • 3Pete Cashmore. YouTube: Why Do We Watch? [DB/ OL]. http://editin, cnn. com/2009/TECH/12/17/ cashmore, youtube/ index, html, 2010.
  • 4J. Berger, K. L. Milkman. Social Transmission, E- motion, and the Virality of Online Content[R]. Whar- ton Research Paper, 2010.
  • 5A. Tumaslan, T. O. Sprenger, P. G. Sanduer, et al. Predicting Elections with Twitter: What 140 Charac- ters Reveal about Political Sentiment[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. ICWSM,10, 2010.
  • 6J. Bollen, H. Mao, A. Pepe. Determining the public mood state by analysis of mieroblogging posts[C]// Proceedings of the Alife XII Conference MIT Press, 2010.
  • 7T. Sakaki, M. Okazaki, Y. Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors[C]//Proceedings of WWW,10, 2010.
  • 8Y. Qu, C. Huang, P. Zhang, et al. Microblogging after a Major Disaster in China: A Case Study of the Yushu Earthquake [C]//Proeeedings of CSCW2011, 2011.
  • 9H. Kwak, C. Lee,H. Park, et al. What is Twitter, a ,Social Network or a News Media[C]//Proceedings of WWW'IO, 2010.
  • 10D. Boyd, S. Golder, G. Lotan. Tweet, tweet, retweet: Conversational aspects of retweeting on Twit- ter [ C]//Proceedings of 43rd Hawaii International Conference on System Sciences, 2010.

共引文献281

同被引文献74

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部