摘要
Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform analysis in an interactive way through the software development process, which has a high performance requirement. This paper concentrates on rule-based static analysis tools and proposes an optimized rule-checking algorithm. Our technique improves the performance of static analysis tools by filtering vulnerability rules in terms of characteristic objects before checking source files. Since a source file always contains vulnerabilities of a small part of rules rather than all, our approach may achieve better performance. To investigate our technique's feasibility and effectiveness, we implemented it in an open source static analysis tool called PMD and used it to conduct experiments. Experimental results show that our approach can obtain an average performance promotion of 28.7% compared with the original PMD. While our approach is effective and precise in detecting vulnerabilities, there is no side effect.
Static analysis is an efficient approach for software assurance. It is indicated that its most effective usage is to perform analysis in an interactive way through the software development process, which has a high performance requirement. This paper concentrates on rule-based static analysis tools and proposes an optimized rule-checking algorithm. Our technique improves the performance of static analysis tools by filtering vulnerability rules in terms of characteristic objects before checking source files. Since a source file always contains vulnerabilities of a small part of rules rather than all, our approach may achieve better performance. To investigate our technique's feasibility and effectiveness, we implemented it in an open source static analysis tool called PMD and used it to conduct experiments. Experimental results show that our approach can obtain an average performance promotion of 28.7% compared with the original PMD. While our approach is effective and precise in detecting vulnerabilities, there is no side effect.
基金
Project supported by the National High-Tech R&D Program(863)of China(No.2013AA12A202)
the National Natural Science Foundation of China(Nos.61172173,41501505,and 61502205)
the Natural Science Foundation of Hubei Province,China(No.2014CFB779)
the Youths Science Foundation of Wuhan Institute of Technology(No.K201546)