期刊文献+

冷却速度对ZM5镁合金凝固组织与性能的影响 被引量:6

The Effect of Cooling Rate on Microstructure and Mechanical Properties on ZM5 Magnesium Alloy
下载PDF
导出
摘要 采用温度采集仪测定砂型(含20 mm厚的冷铁和10 mm厚的冷铁)、金属型(铜模和钢模)在镁合金凝固阶段的平均冷却速率,分析了冷却速度对ZM5镁合金铸态组织、相组成和力学性能的影响,以获得铸锭晶粒尺寸、抗拉强度、硬度与凝固冷却速度之间的影响关系。研究结果表明,在砂型Ⅲ区(含10 mm厚的冷铁)条件下,其冷却速度最慢,为2.94℃/s;在金属型铜模铸造条件下,其冷却速度最快,为7.88℃/s。ZM5镁合金其微观组织主要是α-Mg和第二相Mg_(17)Al_(12)。随着冷却速度的不断提高,镁合金晶粒明显细化,第二相分布更加弥散、均匀,合金的硬度、抗拉强度和伸长率也明显提高。 The average cooling rate in solidification of sand(including 20 mm thick and 10 mm thick chill), and metal(steel and copper mold) is studied by temperature recorder. Analysis the effect of cooling rate on ZM5 magnesium alloy in cast microstructure, phase composition and mechanical properties, in order to obtain the relationship in the grain size, the tensile strength, hardness and solidification cooling rate. The research indicates that the cooling rate is 2.94 ℃/s in the area under the sand Ⅲ(including 10 mm thick chill) conditions; the cooling rate is 7.88 ℃/s in metal copper cold. The microstructure of ZM5 magnesium alloy is mainly α-Mg, and the second phase is Mg_(17)Al_(12). With the continuous increase of cooling rate, magnesium alloy grain is refined, the second phase distribution is more diffuse, the hardness, the tensile strength and elongation of the alloy has improved markedly.
出处 《铸造》 CAS CSCD 北大核心 2017年第3期286-289,293,共5页 Foundry
关键词 冷却速度 晶粒尺寸 微观组织 力学性能 cooling rate grain size microstructure mechanical properties
  • 相关文献

参考文献6

二级参考文献93

  • 1闫蕴琪,张廷杰,邓炬,周廉.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,33(6):561-565. 被引量:120
  • 2波尔米尔IJ 陈昌麟 等.轻合金[M].北京:国防工业出版社,1985..
  • 3Akamatsu H, Fujinami T, Horita Z,. Langdon T G, Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP[J]. Scripta Mater., 2001, 44:759-764.
  • 4Komura S, Furukawa M, Horita Z, Nemoto M, et al. Optimizing the procedure of Equal-channel angular pressing for maximum superplasticity [J]. Mater. Sci. Eng., 2001, A297:111-118.
  • 5Stowell M J, Hamilton N E. Superplastic forming of structural alloys[J]. TMS, 321-336.
  • 6Segal V M. Materials processing by simple shear [J). Mater.Sci. Eng., 1995, A197:157.
  • 7Musin F, Kaibyshev R, Motohashi Y, et al. High Strain Rate Superplasticity in an Al-Li-Mg alloy subjected to Equal-Channel angular extrusion [J]. Mater. Trans. JIM, 2002, 43:2370-2377.
  • 8Edington J W, Melton K N, Cutler C P[J]. Superplasticity.Prog. Mater. Sci., 1976, 21:63-170.
  • 9Akihiro Yamashita, Zenji Horita, Langdon Terence G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation [J]. Mater. Sci. Eng., 2001,A300 : 142.
  • 10Armstrong R,Codd I,Douthwaite R M,et al.The plastic deformation of polycrystalline aggregates[J].Phil.Mag,1962,7:45.

共引文献232

同被引文献53

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部