期刊文献+

供水管路中驼峰气阻的临界平衡实验研究(英文) 被引量:2

Investigation on critical equilibrium of trapped air pocket in water supply pipeline system
原文传递
导出
摘要 目的:输水管道的驼峰气阻是指由于管路高峰位置的滞气作用使气体不断聚积在峰顶附近、产生的气体阻碍水流的局部水力现象。它能够导致管路过水断面减小、输水能耗增加、输送效率降低和管路压力振荡等后果,严重威胁海底管道输水的稳定性和安全性。本文旨在分析滞留气团在供水管道中的力学平衡、能量损失、移动和溢出机理,研究水流流速对气团的推移特性,提出预测和消除驼峰气阻的方法,使输水管道免受驼峰气阻的危害,提高输水管道的供水效率。创新点:1.设计了具有连续坡角变化的圆弧形驼峰管道实验,该实验可以定量模拟气团体积和平衡角度;2.建立了驼峰气阻的水头损失经验公式和恒定流情况下驼峰气阻的管道坡角和流速的对应关系式,可用于预测和消除驼峰气阻的危害。方法:1.通过驼峰气团的受力特性分析,获得满足量纲和谐的力学平衡方程;2.采用试验观察和测试获得有无气泡情况下的水头损失和平衡状态下的坡角,通过等价球体方法对测试数据进行无量纲拟合,获得气阻的水头损失方程系数,并通过流速和平衡坡角建立恒定流情况下的临界平衡方程;3.基于试验拟合获得临界平衡方程,建立预测和评估气阻的准则系数,并提出消除气阻的水流临界流速。结论:1.当管路流速较小时,供水管路的驼峰顶端可能滞留和聚集气体,形成驼峰气阻;气体体积越大对水流阻碍越明显,可能造成的水头损失也越大;2.利用等价球体法可以极大地简化驼峰气阻的形状,并良好地模拟气阻的平衡特性和阻力特性;3.管道流速是影响驼峰气阻临界平衡位置的最重要因素,通过减小管道起伏的坡角或增加水流流速可以防止和消除驼峰气阻的危害。 A trapped air pocket can cause a partial air lock in the top of a hump pipe zone. It increases the resistance and decreases the hydraulic cross section, as well as the capacity of the water supply pipeline. A hydraulic model experiment is conducted to observe the deflection and movement of the trapped air pocket in the hump pipe zone. For various pipe flow velocities and air volumes, the head losses and the equilibrium slope angles are measured. The extra head losses are also obtained by reference to the original flow without the trapped air pocket. Accordingly, the equivalent sphere model is proposed to simplify the drag coefficients and estimate the critical slope angles. To predict the possibility and reduce the risk of a hump air lock, an empirical criterion is established using dimensional analysis and experimental fitting. Results show that the extra head losses increase with the increase of the flow velocity and air volume. Meanwhile, the central angle changes significantly with the flow velocity but only slightly with the air volume. An air lock in a hump zone can be prevented and removed by increasing the pipe flow velocity or decreasing the maximum slope of the pipe.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第3期167-178,共12页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 supported by the National Natural Science Foundation of China(No.51279175) the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E090001) the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,China(No.HESS-1505)
关键词 驼峰管道 管流 滞留气团 水力试验 供水管道 Hump pipe Pipe flow Trapped air pocket Hydraulic experiment Water supply pipeline
  • 相关文献

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部