期刊文献+

超声冲击对Al-Cu合金TIG焊缝微观组织演变的影响 被引量:2

Effect of ultrasonic impact on Al-Cu alloy TIG weld microstructure evolution
下载PDF
导出
摘要 随焊超声冲击焊接通过控制超声冲击工具头的上下运动,实现对焊缝的随焊冲击处理,同时向熔池中导入周期性超声能量.熔池内金属流动状态周期性变化,使得焊缝表面形成明显的类似鱼鳞纹状结构.对比随焊超声冲击焊接和普通TIG焊Al-Cu合金熔池结晶情况.结果表明,周期性超声能量的导入使熔池结晶呈现周期性.有超声作用时,焊缝晶粒细化、细长共晶组织被打碎,焊缝中细晶区宽度与焊接速度、单个周期内超声作用时间线性相关.当超声开始导入时,形成带状组织结构,组织内部θ相细小且分布均匀;超声撤离时,共晶组织呈线状析出,有聚集趋势. Trailing ultrasonic impact welding( TUIW),impacted the welds by controlling the impact-tool up and down,with periodic ultrasonic energy conducted to the molten pool at the same time. Metal flowing patterns changed periodically under the influence of periodic ultrasonic energy,obvious scales formed in the welds surface similar to the fish-scale. Compared with conventional TIG,it turns out that TUIW periodic ultrasonic energy leads to periodic crystallization during Al-Cu alloy molten pool solidification process. With ultrasonic in,the weld grains were refined and the elongated eutectics were broken down,the width of small grain zone depend linearly on welding velocity and the ultrasonic action time in a single cycle. When ultrasonic began to import,banded structure formed in the weld,θ phase was small and distributed evenly within the organization. Meanwhile,eutectic organization precipitated linearly and tended to be gathered.
出处 《焊接学报》 EI CAS CSCD 北大核心 2017年第2期79-82,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金重点资助项目(51435004)
关键词 超声 冲击 周期性 结晶 ultrasonic impact periodic crystallization
  • 相关文献

参考文献4

二级参考文献30

  • 1Wu Minsheng Wang Zhengxian Li Luming Sun Diqing Duan Xiangyang Department of Mechanical Engineering, Qinghua University.STUDY ON MECHANISM OF ARC-EXCITED ULTRASONIC[J].Chinese Journal of Mechanical Engineering,1999,12(1):2-4. 被引量:8
  • 2胡星,郝红伟,文雄伟,何龙标,李路明,吴敏生.影响电弧超声激发强度的参数[J].焊接学报,2007,28(4):73-76. 被引量:5
  • 3周万盛.航天贮箱材料及其焊接性[J].宇航材料工艺,1986,(5):57-59.
  • 4Bertini L, Fontanari V, Straffelini G. Influence of post weld treatments on the fatigue behavior of Al alloy welded joints[J]. International Journal of Fatigue, 1998, 20 (10): 749 -755.
  • 5Statnikov E S, Muktepavel V O, Troufiakov V J, et al. Comparison of ultrasonic impact treatment and other fatigue life improvement methods[J]. Welding in the World, 2002, 46 (3/4): 20 -32.
  • 6Xiaohua Cheng, John W, Fisher, et al. Residual stress modifica-tion by post-weld treatment and its beneficial effect on fatigue strength of welded structures[J]. International Journal of Fatigue, 2003, 25: 1259 -1269.
  • 7Sougata Roy, John W, Fisher, et al. Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT)[J]. International Journal of Fatigue. 2003, 25: 1239 -1247.
  • 8Godfrey A B, Loretto M H. Nature of complex precipitates associated with the addition of boron to a γ-based titanium aluminide[J]. Intermetallics, 1996, 4(1): 47-53.
  • 9Szekely J. Flow phenomena mixing and mass transfer in argon-stirred ladles[J]. Iron Making & Steel Making, 1979, 10(6): 285-292.
  • 10Dobatkin V I, Eskin G I. The effect of high-intensity ultrasound on the phase interface in materials[M]. Nauka: Moscow, 1986.

共引文献104

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部