摘要
为了比较常规快堆与行波堆的堆芯特性,以最大卸料燃耗300 000 MWd/tHM为目标,设计了高燃耗快堆(HBFR),给出了堆芯的物理学设计方案。采用六批换料方式补偿燃耗反应性损失。选择NAS程序计算了冷停堆状态、热停堆状态和满功率状态三种不同堆芯状态,分析了临界参数、功率分布、DPA特性、温度和功率反应性特性、控制棒价值等堆芯参数。设计结果表明,HBFR的燃料组件最大卸料燃耗接近300 000MWd/tHM,平均卸料燃耗219 000 MWd/tHM,单循环燃耗反应性损失3.7%(k是有效增殖因子,Δk是有效增殖因子的变化量),可以通过补偿棒实现反应性控制,HBFR的各参数满足设计目标与设计限值,可以为下一步与行波堆的比较研究提供参考堆芯。
In order to compare core characteristics of conventional fast reactor with travelling wave reactor, a conceptual neutronic design of conventional fast reactor called HBFR (High Burnup Fast Reactor) with maximum burnup up to 300 000 MWd/tHM was given. In order to decrease the burnup reactivity swing, a refueling strategy which refuel only one-sixth of fuel assembly was chosen. The NAS code was used to analyse three different operating conditions: cold room temperature, hot stand- by and full-power conditions. Some core parameters such as criticality, power distribution, DPA characters, temperature and power reactivity, control rod worth, etc. are calculated. The results show that the maximum burnup of fuel assembly is 300 000 MWd/tHM, the average hurnup is about 219 000 MWd/tHM and the burnup reactivity swing is 3.7%Ak/k which can be con- trolled by regulation rods. The design of HBFR can meet the design objectives and design limits and provide data to compare with TWR effectively.
作者
王新哲
徐李
贾晓淳
胡赟
Wang Xinzhe Xu Li Jia Xiaochun Hu Yun(Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China)
出处
《强激光与粒子束》
EI
CAS
CSCD
北大核心
2017年第3期102-106,共5页
High Power Laser and Particle Beams
关键词
快堆
行波堆
超高燃耗
金属燃料
堆芯设计
fast reactor
travelling wave reactor
super high burnup
metal fuel
reactor core design