期刊文献+

超高燃耗常规快堆堆芯物理概念设计 被引量:1

Conceptual neutronic design of conventional fast reactor with super high burnup
下载PDF
导出
摘要 为了比较常规快堆与行波堆的堆芯特性,以最大卸料燃耗300 000 MWd/tHM为目标,设计了高燃耗快堆(HBFR),给出了堆芯的物理学设计方案。采用六批换料方式补偿燃耗反应性损失。选择NAS程序计算了冷停堆状态、热停堆状态和满功率状态三种不同堆芯状态,分析了临界参数、功率分布、DPA特性、温度和功率反应性特性、控制棒价值等堆芯参数。设计结果表明,HBFR的燃料组件最大卸料燃耗接近300 000MWd/tHM,平均卸料燃耗219 000 MWd/tHM,单循环燃耗反应性损失3.7%(k是有效增殖因子,Δk是有效增殖因子的变化量),可以通过补偿棒实现反应性控制,HBFR的各参数满足设计目标与设计限值,可以为下一步与行波堆的比较研究提供参考堆芯。 In order to compare core characteristics of conventional fast reactor with travelling wave reactor, a conceptual neutronic design of conventional fast reactor called HBFR (High Burnup Fast Reactor) with maximum burnup up to 300 000 MWd/tHM was given. In order to decrease the burnup reactivity swing, a refueling strategy which refuel only one-sixth of fuel assembly was chosen. The NAS code was used to analyse three different operating conditions: cold room temperature, hot stand- by and full-power conditions. Some core parameters such as criticality, power distribution, DPA characters, temperature and power reactivity, control rod worth, etc. are calculated. The results show that the maximum burnup of fuel assembly is 300 000 MWd/tHM, the average hurnup is about 219 000 MWd/tHM and the burnup reactivity swing is 3.7%Ak/k which can be con- trolled by regulation rods. The design of HBFR can meet the design objectives and design limits and provide data to compare with TWR effectively.
作者 王新哲 徐李 贾晓淳 胡赟 Wang Xinzhe Xu Li Jia Xiaochun Hu Yun(Reactor Engineering Technology Research Division, China Institute of Atomic Energy, Beijing 102413, China)
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2017年第3期102-106,共5页 High Power Laser and Particle Beams
关键词 快堆 行波堆 超高燃耗 金属燃料 堆芯设计 fast reactor travelling wave reactor super high burnup metal fuel reactor core design
  • 相关文献

参考文献3

二级参考文献33

  • 1李怀林,李文埮,尹邦跃.CeO_2代替PuO_2模拟制造MOX燃料芯块的可行性[J].原子能科学技术,2003,37(z1):24-28. 被引量:1
  • 2尹邦跃,梁雪元,梁启东.模拟MOX燃料粉末混合均匀性研究[J].原子能科学技术,2005,39(B07):125-130. 被引量:9
  • 3Fisher S B , White R J , Cook P M A, et al. Micro structure of irradiated SBR MOX fuels and its relation ship to fission gas release[J]. J Nucl Mater, 2002, 306 :153-172.
  • 4WhiteRF, FisherSB, CookPMA, etal. Measuremerit and analysis of fission gas release from BNFL' s SBR MOX fuel[J].J Nucl Mater, 2001, 288: 43-56.
  • 5Maeda K, Katsuyama K, Asaga T. Fission gas release in FBR MOX fuel irradiation to high burnup[J]. J Nuel Mater, 2005, 346:244-252.
  • 6Krellmann J. Plutonium processing at the SIMENS HANAU fuel fabrication plant [J].Nuclear Technology, 1993, 102: 18-28.
  • 7Ott L J , Morris R N. Irradiation tests of mixed oxides fuel prepared with weapon derived plutonium[J].J Nuel Mater, 2007, 371: 314-328.
  • 8Kim H S , Joun C Y g, Lee B H, et al. Applicability of CeO2 as a surrogate for PuO2 in a MOX fuel development[J]. J Nucl Mater, 2008, 378: 98-104.
  • 9Oudinet G, Viallard I M, Aufore L, et al. Charaterization of plutonium distribution in MIMAS MOX by image analysis[J]. J Nucl Mater, 2008, 375: 86-94.
  • 10Kleykamp H. Post-irradiation studies on LWR MOX fuel fabricated by the optimized co-milling process[J]. J Nucl Mater, 2004, 324:198 202.

共引文献44

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部