期刊文献+

R134a喷射冲击相变制冷的数值模拟及结构优化

Numerical thermal analysis and optimization of R134 jet impingement cooling
原文传递
导出
摘要 为分析R134a喷射冲击相变制冷的传热效果,以数值模拟为基础,采用计算流体力学的思路,通过控制变量的方法,研究各个物理因素对冷却效果的影响。流道长度L为定值,分析变量为流道高度C,喷嘴宽度W,喉部宽度D1,喷射出口宽度D2,喷嘴高度H,液相与气相的体积分数比ω。结果表明:热表面的冷却效果随流道高度和喷嘴宽度的增大而减小,随液相与气相的体积分数比ω的增大而增大;而在止滞点附近的冷却效果随喉部宽度和喷嘴高度的减小而增大,在流道出口附近随喉部宽度和喷嘴高度的增大而增大。在止滞点处,冷却效果最佳的结构模型为:C/L为0.02,W/L为0.05,D1/L为0.01,D2/L为0.015,H/L为0.03。 this paper investigated the influence of the phase - change cooling with a confined slot R134a jet based on numer- ical analysis and numerical simulation in computational fluid dynamics(CFD). The size of the channel length is fixed. Some var- iable parameters are the channel height ( C), the nozzle width ( W), the throat width (D1), the jet outlet width (D2 ), the nozzle height (H) and the volume fraction of liquid phase and gas phase ratio (to). The results reveal that the Nusselt number decrea- ses as the increasing of the channel height and the nozzle width , and that increases as the increasing of the volume fraction of liq- uid phase and gas phase ratio. The Nusselt number near the stagnation point increases as decreasing of the throat width and the nozzle height, and that near exits of channels increased as increasing the throat width and the nozzle height. The optimization model at the stagnation point are C/L =0. 02, W/L =0. 05 ,D1/L =0. 01 ,D2/L =0. 015 ,H/L =0. 03.
作者 许改云 李风雷 朱高强 田琦 Xu Gaiyun Li Fenglei Zhu Gaoqiang Tian Qi(Taiyuan University of Technology, Taiyuan 030000, Chin)
出处 《低温与超导》 CAS 北大核心 2017年第3期67-72,共6页 Cryogenics and Superconductivity
基金 山西省科技攻关项目(20140313006-6) 国家国际科技合作专项项目(2013DFA61580)科研项目(2016-032)资助
关键词 喷射冲击 相变制冷 R134A 数值模拟 Impinging jet, Phasechange cooling, R134a, Numerical simulation
  • 相关文献

参考文献2

二级参考文献23

  • 1牛珏,温治,王俊升.圆形喷口紊流冲击射流流动与传热过程数值模拟[J].冶金能源,2007,26(1):16-20. 被引量:9
  • 2李辉平,赵国群,贺连芳.时间步长对淬火过程温度场和组织场模拟精度的影响[J].金属热处理,2007,32(2):60-64. 被引量:5
  • 3俞景禄,魏季和.冶金中的传热传质现象[M].北京:冶金工业出版社,1981:296-299.
  • 4MANSOO C, HANS Y. Measurements of impinging jet flow and heat transfer on a semi-circular concave surface [J]. Heat and MassTransfer,2000, 1811 -1822.
  • 5BUDDHIKA N. A numerical study of heat transfer perform- ance of ossillatory impinging jets[ J ]. International Journal of Heat and Mass Transfer,2009, (52) :396 - 406.
  • 6GARDON R, COBONPUE J. Heat transfer between a flat plate and jets of air impinging on it[ J]. Internationnal De- velopments in Heat Transfer. ASME, New York. 1962. 454 - 460.
  • 7GARDON R, AKFIRAT J C. The role of turbulence in de- termining the heat transfer characteristics of impinging jets [J]. Int J Heat Mass Transfer,1965.8:1261 - 1272.
  • 8KERCHER D M, TABAKOFF W. Heat transfer by a square array of round air jets impinging perpendicular to a fiat surface including the effect of spent air[ J ]. Transac- tions of the ASME Journal of Engineering for Power, 1970: 73 - 82.
  • 9薛胜熊.高压水射流技术与应用[M].北京:机械工业出版社.1998:8-20.
  • 10MUAMMER K, JOHN C, TAYLAN A. Prediction of re- sidual stresses in quenched aluminum blocks and their re- duction through cold working processes [ J ]. Journal of Materials Processing Technology, 2006,174:342 - 354.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部