摘要
研究了Saint-Venant方程组的Crank-Nicolson格式离散化并建立学习控制模型.首先给出了表示明渠流水流质量和动量守恒的Saint-Venant方程组,并线性化;其次,采用Crank-Nicolson格式进行离散,得到了无条件稳定的离散化方程组;最后通过离散化后得到的状态空间方程,建立了基于迭代学习控制的数学模型,为后续进一步研究算法的收敛性奠定了基础.
This paper concerned with Crank-Nicolson format discretization method for Saint-Venant equations, and building a learning control model. Firstly, Saint-Venant continuous equations were given, which with respect to open channel flow mass and momentum conservation, and linearization. Secondly, The Crank-Nicolson approach discrete for lineariza- tion of Saint-Venant equations was presented. Then unconditionally stable discrete equations were obtained. Finally, Mathematical model of the iterative learning control was established from state space equation, which have a sound theoretical basis for later study of convergence of the algorithm.
作者
李光
戴喜生
LI Guang DAI Xi-sheng(School of Electrical and Information Engineering,Guangxi University of Science and Technology ,Liuzhou,Guangxi 545006,China Colleges and Universities Key Laboratory of Intelligent Integrated Automation Guilin University of Electronic Technology,Guilin,Guangxi 541004,China)
出处
《计算技术与自动化》
2017年第1期6-11,共6页
Computing Technology and Automation
基金
国家自然科学基金项目(NSFC61364006)
智能综合自动化高校重点实验室基金项目(智自201502)