期刊文献+

图像去雾中的大气光强度自适应恢复算法研究 被引量:1

Study on Adaptive Recovering Algorithm for Atomospheric Light Vector in Image Dehazing
下载PDF
导出
摘要 传统的单幅图像去雾方法中大气光强度仅设定为与图像最亮象素有关的经验值,容易造成去雾后的图像亮度偏暗,且某些区域色彩还原失真等问题。本文提出一种大气光强度自适应恢复算法。首先对图进行分块,根据每个图块的像素在RGB颜色空间分布在同一条线上,可求得大气光强度的方向,然后对大气光强度模值引入一个惩罚因子实现图像去雾,对去雾后图像提出大气光强度模值估计的目标函数,根据图像明暗系数的最大值与透射率的等级无关的约束条件,利用L-BFGS优化从而得到正确的大气光强度模值。实验结果证明该方法可以有效避免大气光强度估值偏差而引起的图像色彩失真,鲁棒性强,去雾后的图像具有更好的色彩还原度和清晰度,更能符合人眼视觉效果。 This paper presented a new method for recovering atmospheric light vector in hazy scenes. Firstly, the haze image was divided into patches, and such patches pixels come into being a line in RGB color space, and the orientation of the atmospheric light vector can be recovered. Then the image was dehazed by using wrong magnitude of atmospheric light vector, and the optimization function was proposed to estimate magnitude of atmospheric light vector. And the restricted condition was added to the optimization function, which means that the max-brightness is independent with different transmission level. So, the magnitude of the atmospheric light vector is recovered by the L-BFGS. Experimental results show that the proposed method can avoid the image color distortion by improving estimation accuracy of magnitude of the atmospheric light vector, and it has robustness. The dehazing images have better color restore degrees and sharpness, which could be more consistent with human visual effects.
作者 程炜 汤红忠 朱玲 王翔 李骁 郭雪峰 CHENG Wei TANG Hong-zhong ZHU Ling WANG Xiang LI Xiao GUO Xue-feng(College of Information Engineering,Xiangtan University, Xiangtan,Hunan 411105,China College of Electrical and Information Engineering,Hunan University,Changsha,Hunan 410082,China Institute of Control Engineering, Xiangtan University,Xiangtan,Hunan 411105,China)
出处 《计算技术与自动化》 2017年第1期103-107,共5页 Computing Technology and Automation
基金 国家自然科学基金(No.61573299) 湖南省教育厅项目(11KZ/KZ02062)
关键词 大气光强度 明暗系数 模值估计 透射率 atmospheric light vector intensity of reflected light estimation of magnitude transmission
  • 相关文献

参考文献4

二级参考文献51

  • 1詹翔,周焰.一种基于局部方差的雾天图像增强方法[J].计算机应用,2007,27(2):510-512. 被引量:45
  • 2Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.
  • 3Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9.
  • 4KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963.
  • 5Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208.
  • 6姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5.
  • 7Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927.
  • 8Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612.
  • 9Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256.
  • 10Chambah M, Rizzi A, Gatta C, et al. Perceptual approach for unsupervised digital color restoration of cinematographic archives [C]//Proceedings of SPIE Conference on Color Imaging VIII: Processing, Hardcopy, and Applications. Washington, USA : SPIE, 2003.5008 :138-149.

共引文献123

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部