期刊文献+

基于云计算服务质量感知的虚拟机节能管理研究 被引量:3

Energy-efficient Virtual Machines Management Using QOS-aware in Cloud Computing
下载PDF
导出
摘要 云计算是大量的虚拟化的计算机资源的服务节点,如何管理基于节能型和服务型的动态可扩展资源已成为一个重要的问题。针对这一目的,综合大量前期工作,提出了一种改进的遗传算法,并构造系统模型,通过使用CloudSim(云计算仿真软件)和CloudAnalyst(云分析软件)进行定性和定量的数据分析。同时也与传统的动态电压和频率缩放(DVFS)做了比较,通过数据验证证明出利用服务质量感知对虚拟机的节能管理在响应时间、能源消耗、虚拟机迁移数量及合并适应性方面都起到改进作用。表现为在相同功率条件下,新方法能降低用户请求的响应时间,进而提高了用户的服务质量;在相同的响应时间内,新方法又能有效的降低能量功耗。这些改进都能提高用户对服务质量的满意度,同时也为未来使用并行计算技术打下了基础。 Cloud computing is a pool of virtualized computer resources (service nodes), how to manage the dynamically scalable resources based on the energy-efficient and Qos(response time)-aware have become a significant issue. Aiming to this purpose, an improved genetic algorithm has been proposed in this paper. Performance of the algorithm is analyzed both qualitatively and quantitatively using CloudSim and CloudAnalyst. A comparison is also made with dynamic voltage and fre- quency scaling (DVFS). Through data validation, it is proved that the energy management of virtual machine can improve the response time, energy consumption, the number of virtual machine migration and the CF of the virtual machine. Under the same power condition, the new method can reduce the response time and improve the quality of service. In the same time, the new method ean effectively reduce the energy consumption. These improvements can improve the quality of service satisfaction, but also for the future use of parallel computing technology to lay the foundation.
作者 李爽 LI Shuan(Fushun Vocational Technology Institute, Fushun, Liaoning 113112,China)
出处 《计算技术与自动化》 2017年第1期155-160,共6页 Computing Technology and Automation
关键词 云计算 负载平衡 节能感知 资源分配 CloudSim CloudAnalyst cloud computing load balancing energy-aware resouree allocation CloudSim CloudAnalyst
  • 相关文献

参考文献4

二级参考文献33

  • 1Bui V, Norris B, Huck K, et al. A component infra- structure for performance and power modeling of par- allel scientific applications[C]//Proc of CBHPC' 08. Karlsruhe, Germany:[s. n. ], 2008.
  • 2Khan S, Ahmad I. A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(3) :346-360.
  • 3Guzek M, Pecero J, Dorrosoro B, et al. A cellular ge- netic algorithm for scheduling applications and energy- aware communication optimization [C]// International Conference on High Performance Computing and Sim- ulation (HPCS). France: IEEE, 2010: 241-248.
  • 4GAN Guo-ning, HUANG Ting-lei, GAO Shuai. Ge- netic simulated annealing algorithm for task scheduling based on cloud computing environment [C]// Interna- tional Conference on Intelligent Computing and Inte- grated Systems (ICISS), Guilin, China: IEEE, 2010: 60-63.
  • 5Kolodziej J, Khan S, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids[C]//2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Barcelona, Catalonia, Spain: IEEE, 2011:17-24.
  • 6ARMBRUST M, FOX A, GRIFFITH R. A view of cloud computing[J]. Communications of the ACM, 2010, 53( 4) : 50 - 58.
  • 7LIN C, LIN P. Energy-aware virtual machine dynamic provision and scheduling for cloud computing[C 1 I I Proceedings of the 2011 IEEE 4 th International Conference on Cloud Computing. Piscat?away: IEEE, 2011: 736 -737.
  • 8WANG X L, LIU Z H. An energy-aware VMs placement algorithm in cloud computing environment[C] 1/ ISDEA 2012: Proceedings of the Second International Conference on Intelligent System Design and Engineering Application. Piscataway: IEEE, 2012: 627 -630.
  • 9PIAO A, YANJ. A network-aware virtual machine placement and migration approach in cloud computing[C]/ I GCC '10: Proceed?ings of the Ninth International Conference on Grid and Cloud Com?puting. Washington, DC: IEEE Computer Society, 2010: 87 -92.
  • 10VERSICK D, TAYANGARIAN D. Reducing energy consumption by load aggregation with an optimized dynamic live migration of virtual machines[C] II 3PGCIC '10: Proceedings of the 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Washington, DC: IEEE Computer Society, 2010: 164 -170.

共引文献195

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部